RUS  ENG
Full version
PEOPLE

Chentsov Aleksei Aleksandrovich

Publications in Math-Net.Ru

  1. The routing bottlenecks problem (optimization within zones)

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:2 (2024),  267–285
  2. Minimax routing problem with a system of priority tasks

    Izv. IMI UdGU, 62 (2023),  96–124
  3. On the application of the minimax traveling salesman problem in aviation logistics

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:3 (2023),  20–34
  4. Dynamic programming and questions of solvability of route bottleneck problem with resource constraints

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022),  569–592
  5. On one routing problem oriented on the problem of dismantling radiation-hazardous objects

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  83–95
  6. One task of routing jobs in high radiation conditions

    Izv. IMI UdGU, 58 (2021),  94–126
  7. On the Problem of Sequential Traversal of Megalopolises with Precedence Conditions and Cost Functions Depending on a List of Tasks

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  219–234
  8. On one routing problem with non-additive cost aggregation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:1 (2020),  64–80
  9. On the question of the optimization of permutations in the problem with dynamic constraints

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:3 (2019),  363–381
  10. Optimizing the starting point in a precedence constrained routing problem with complicated travel cost functions

    Ural Math. J., 4:2 (2018),  43–55
  11. Dynamic programming in the generalized bottleneck problem and the start point optimization

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018),  348–363
  12. Solving a routing problem with the aid of an independent computations scheme

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:1 (2018),  60–74
  13. Elements of dynamic programming in local improvement constructions for heuristic solutions of routing problems with constraints

    Avtomat. i Telemekh., 2017, no. 4,  106–125
  14. A model variant of the problem about radiation sources utilization (iterations based on optimization insertions)

    Izv. IMI UdGU, 50 (2017),  83–109
  15. A discrete-continuous routing problem with precedence conditions

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:1 (2017),  275–292
  16. On one routing problem modeling movement in radiation fields

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:4 (2017),  540–557
  17. Routization problem complicated by the dependence of costs functions and «current» restrictions from the tasks list

    Model. Anal. Inform. Sist., 23:2 (2016),  211–227
  18. Routing of displacements with dynamic constraints: “bottleneck problem”

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:1 (2016),  121–140
  19. Generalized model of courier with additional restrictions

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:1 (2016),  46–58
  20. On a routing problem with constraints that include dependence on a task list

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  178–195
  21. Elements of dynamic programming in extremal route problems

    Probl. Upr., 2013, no. 5,  12–21
  22. The iterations method in generalized courier problem with singularity in the definition of cost functions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 3,  88–113
  23. On an iterative procedure for solving a routing problem with constraints

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012),  261–281
  24. On a routing problem with internal tasks

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  298–317
  25. An extremal constrained routing problem with internal losses

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 6,  64–81
  26. Routing with an abstract function of travel cost aggregation

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  240–264
  27. One bottleneck routing problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010),  152–170
  28. Iteration method in the routing problem with internal losses

    Trudy Inst. Mat. i Mekh. UrO RAN, 15:4 (2009),  270–289
  29. Extremal routing problem with internal losses

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:3 (2008),  183–201
  30. Extremal bottleneck routing problem with constraints in the form of precedence conditions

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008),  129–142
  31. О реализации метода динамического программирования в обобщенной задаче курьера

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007),  136–160
  32. On Solution of the Problem of Successive Round of Sets by the “Nonclosed” Travelling Salesman Problem

    Avtomat. i Telemekh., 2002, no. 11,  151–166
  33. Reduction of route optimization problems

    Avtomat. i Telemekh., 2000, no. 10,  136–150
  34. On the solution of the route optimization problem by the dynamic programming method

    Avtomat. i Telemekh., 1998, no. 9,  117–129


© Steklov Math. Inst. of RAS, 2025