RUS  ENG
Full version
PEOPLE

Maslova Natalia V.

Publications in Math-Net.Ru

  1. 2023 Ural workshop on group theory and combinatorics

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024),  284–293
  2. Nonpronormal subgroups of odd index in finite simple linear and unitary groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:1 (2024),  70–79
  3. Shunkov groups saturated with almost simple groups

    Algebra Logika, 62:1 (2023),  93–101
  4. Finite simple groups with two maximal subgroups of coprime orders

    Sib. Èlektron. Mat. Izv., 20:2 (2023),  1150–1159
  5. On a class of vertex-primitive arc-transitive amply regular graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  258–268
  6. On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  168–175
  7. Characterization of groups $E_6(3)$ and ${^2}E_6(3)$ by Gruenberg–Kegel graph

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  1651–1656
  8. On the coincidence of the classes of finite groups $E_{\pi_x}$ and $D_{\pi_x}$

    Sibirsk. Mat. Zh., 62:1 (2021),  55–64
  9. Recognition of the Group $E_6(2)$ by Gruenberg-Kegel Graph

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  263–268
  10. 2020 Ural Workshop on Group Theory and Combinatorics

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:1 (2021),  273–282
  11. Open questions formulated at the 13th School-Conference on Group Theory Dedicated to V. A. Belonogov's 85th Birthday

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020),  275–285
  12. Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  125–131
  13. Finite almost simple groups whose Gruenberg–Kegel graphs coincide with Gruenberg–Kegel graphs of solvable groups

    Algebra Logika, 57:2 (2018),  175–196
  14. On pronormal subgroups in finite simple groups

    Dokl. Akad. Nauk, 482:1 (2018),  7–11
  15. Classification of maximal subgroups of odd index in finite simple classical groups: addendum

    Sib. Èlektron. Mat. Izv., 15 (2018),  707–718
  16. On the pronormality of subgroups of odd index in some extensions of finite groups

    Sibirsk. Mat. Zh., 59:4 (2018),  773–790
  17. On the pronormality of subgroups of odd index in finite simple symplectic groups

    Sibirsk. Mat. Zh., 58:3 (2017),  599–610
  18. On the realizability of a graph as the Gruenberg–Kegel graph of a finite group

    Sib. Èlektron. Mat. Izv., 13 (2016),  89–100
  19. Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  178–187
  20. On Deza graphs with disconnected second neighborhood of a vertex

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  50–61
  21. A pronormality criterion for supplements to abelian normal subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  153–158
  22. Finite groups with arithmetic restrictions on maximal subgroups

    Algebra Logika, 54:1 (2015),  95–102
  23. On the pronormality of subgroups of odd index in finite simple groups

    Sibirsk. Mat. Zh., 56:6 (2015),  1375–1383
  24. On the finite prime spectrum minimal groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  222–232
  25. Finite simple groups that are not spectrum critical

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  172–176
  26. On realizability of a graph as the prime graph of a finite group

    Sib. Èlektron. Mat. Izv., 11 (2014),  246–257
  27. Nonabelian composition factors of a finite group with arithmetic constraints to nonsolvable maximal subgroups

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  122–134
  28. On the coincidence of Grünberg–Kegel graphs of a finite simple group and its proper subgroup

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  156–168
  29. On nonabelian composition factors of a finite group that is prime spectrum minimal

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  155–166
  30. Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  199–206
  31. Finite groups whose maximal subgroups have the Hall property

    Mat. Tr., 15:2 (2012),  105–126
  32. Nonabelian composition factors of a finite group whose all maximal subgroups are Hall

    Sibirsk. Mat. Zh., 53:5 (2012),  1065–1076
  33. Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle

    Algebra Logika, 50:2 (2011),  189–208
  34. Classification of maximal subgroups of odd index in finite groups with simple orthogonal socle

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  237–245
  35. Classification of maximal subgroups of odd index in finite groups with alternating socle

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  182–184
  36. Classification of maximal subgroups of odd index in finite simple classical groups

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  100–118


© Steklov Math. Inst. of RAS, 2024