RUS  ENG
Full version
PEOPLE

Lazarev Alexander Alekseevich

Publications in Math-Net.Ru

  1. Minimizing the total weighted duration of courses in a single machine problem with precedence constraints

    Avtomat. i Telemekh., 2023, no. 9,  153–168
  2. Optimization of a recursive conveyor by reduction to a constraint satisfaction problem

    Avtomat. i Telemekh., 2021, no. 11,  75–93
  3. Metric interpolation for the problem of minimizing the maximum lateness for a single machine

    Avtomat. i Telemekh., 2021, no. 10,  93–109
  4. Metric approach for finding approximate solutions of scheduling problems

    Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021),  1179–1191
  5. Minimizing total weighted tardiness for scheduling equal-length jobs on a single machine

    Avtomat. i Telemekh., 2020, no. 5,  119–138
  6. Rescheduling traffic on a partially blocked segment of railway with a siding

    Avtomat. i Telemekh., 2020, no. 5,  91–105
  7. Scheduling the two-way traffic on a single-track railway with a siding

    Avtomat. i Telemekh., 2018, no. 3,  144–166
  8. Estimation of the absolute error and polynomial solvability for a classical $NP$-hard scheduling problem

    Dokl. Akad. Nauk, 480:5 (2018),  523–527
  9. Minimizing the maximal weighted lateness of delivering orders between two railroad stations

    Avtomat. i Telemekh., 2016, no. 12,  3–25
  10. Two-directional traffic scheduling problem solution for a single-track railway with siding

    Avtomat. i Telemekh., 2016, no. 11,  158–174
  11. A new effective dynamic program for an investment optimization problem

    Avtomat. i Telemekh., 2016, no. 9,  150–166
  12. Minimization of the maximal lateness for a single machine

    Avtomat. i Telemekh., 2016, no. 4,  134–152
  13. Mathematical modeling of the astronaut training scheduling

    UBS, 63 (2016),  129–154
  14. Scheduling problem for two-station single track railway with sidings

    UBS, 58 (2015),  244–284
  15. Metric for minimum total delay problem

    UBS, 57 (2015),  123–137
  16. Models and solution methods for problems in theory of scheduling

    Avtomat. i Telemekh., 2014, no. 7,  14–16
  17. Integer formulations of freight train design and scheduling problems

    UBS, 38 (2012),  161–169
  18. Properties of optimal schedules for the minimization total weighted completion time in preemptive equal-length job with release dates scheduling problem on a single machine

    Avtomat. i Telemekh., 2010, no. 10,  80–89
  19. Algorithms for some maximization scheduling problems on a single machine

    Avtomat. i Telemekh., 2010, no. 10,  63–79
  20. Transformation of the network graph of scheduling problems with precedence constraints to a planar graph

    Dokl. Akad. Nauk, 424:1 (2009),  7–9
  21. Estimates of the absolute error and a scheme for an approximate solution to scheduling problems

    Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009),  382–396
  22. On project scheduling problem

    Avtomat. i Telemekh., 2008, no. 12,  86–104
  23. Graphic approach to combinatorial optimization

    Avtomat. i Telemekh., 2007, no. 4,  13–23
  24. Solution of the NP-hard total tardiness minimization problem in scheduling theory

    Zh. Vychisl. Mat. Mat. Fiz., 47:6 (2007),  1087–1098
  25. A scheme of approximation solution of problem $1|R_j|L_{\max}$

    Diskretn. Anal. Issled. Oper., Ser. 2, 13:1 (2006),  57–76
  26. Decomposition algorithm to minimize total tardiness

    Issled. Prikl. Mat., 17 (1990),  71–78
  27. Analysis of scheduling problems using transformations

    Issled. Prikl. Mat., 12 (1984),  63–74
  28. Dual of the maximum cost minimization problem

    Issled. Prikl. Mat., 10 (1984),  111–113
  29. Scheduling algorithms based on necessary optimality conditions

    Issled. Prikl. Mat., 10 (1984),  102–110

  30. Opening remarks

    Avtomat. i Telemekh., 2022, no. 12,  3–4
  31. Foreword of the program committee of the conference “Mathematical pattern recognition methods”

    Avtomat. i Telemekh., 2022, no. 10,  3–8
  32. Opening remarks by the Program Committee of the Conference “Intelligent Data Processing. Theory and Applications” (IDP-2020)

    Avtomat. i Telemekh., 2021, no. 10,  3–5
  33. Models and methods of scheduling theory. Tanaev V.S.

    Avtomat. i Telemekh., 2020, no. 5,  3–5
  34. Methods and algorithms for solving transport type problems

    Avtomat. i Telemekh., 2016, no. 11,  3
  35. Foreword to the thematical issue devoted to the seventieth anniversary of Academician V. S. Tanaev

    Avtomat. i Telemekh., 2010, no. 10,  3–5


© Steklov Math. Inst. of RAS, 2024