RUS  ENG
Full version
PEOPLE

Pechinkin Aleksandr Vladimirovich

Publications in Math-Net.Ru

  1. Two-channel MAP/PH/2 system with customer resequencing

    Avtomat. i Telemekh., 2016, no. 5,  50–65
  2. Joint stationary distribution of $m$ queues in the $N$-server queueing system with reordering

    Inform. Primen., 9:3 (2015),  25–31
  3. Joint stationary distribution of the number of customers in the system and reordering buffer in the multiserver reordering queue

    Inform. Primen., 8:4 (2014),  3–10
  4. Stationary distribution in a queueing system with inverse service order and generalized probabilistic priority

    Inform. Primen., 8:3 (2014),  28–38
  5. Performance characteristics of $\mathrm{Geo/Geo/1/}R$ queue with hysteretic load control

    Inform. Primen., 8:2 (2014),  15–27
  6. The distribution of the return time from the set of overload states to the set of normal load states in a system $M|M|1|\langle L,H \rangle |\langle H,R \rangle$ with hysteretic load control

    Inform. Primen., 7:4 (2013),  20–33
  7. Stationary characteristics of the queueing system with LIFO service, probabilistic priority, and hysteric policy

    Inform. Primen., 7:1 (2013),  22–35
  8. A restriction on the total volume of demands in the discrete-time system Geo$/G/1/\infty$

    Inform. Primen., 6:3 (2012),  107–113
  9. On temporal characteristics in an exponential queueing system with negative claims and a bunker for ousted claims

    Avtomat. i Telemekh., 2011, no. 12,  75–90
  10. $Geo_m/G/1/n$ system with $LIFO$ discipline without interrupts and constrained total amount of customers

    Avtomat. i Telemekh., 2011, no. 1,  107–120
  11. Discrete time queueing system with unreliable server

    Inform. Primen., 5:4 (2011),  6–17
  12. Two-priority system with reservation of channels and Markov input flow

    Inform. Primen., 5:1 (2011),  2–11
  13. Discrete-time $MAP/G/1/\infty$ system with inversive probabilistic servicing discipline

    Avtomat. i Telemekh., 2010, no. 12,  57–69
  14. Estimation of self-healing time for digital systems under transient faults

    Inform. Primen., 4:3 (2010),  2–8
  15. Stationary time characteristics of the $GI/M/n/\infty$ system with some variants of the generalized renovation discipline

    Avtomat. i Telemekh., 2009, no. 12,  161–174
  16. A queueing system with negative claims and a bunker for superseded claims in discrete time

    Avtomat. i Telemekh., 2009, no. 12,  109–120
  17. Multichannel queueing system with refusals of servers groups

    Inform. Primen., 3:3 (2009),  4–15
  18. A probabilistic analysis of fault detection latency in a network of Finite State Machines

    Inform. Primen., 3:2 (2009),  2–14
  19. $Geo/G/1/\infty$-queue with one “nonstandard” discipline of service

    Inform. Primen., 2:1 (2008),  55–62
  20. G-network with the route change

    Sistemy i Sredstva Inform., 2008, no. special issue,  54–61
  21. Analysis of the multi-server Markov queuing system with unlimited buffer and negative customers

    Avtomat. i Telemekh., 2007, no. 1,  93–104
  22. Stationary characteristics of a multichannel queuing system with simultaneous refusals of servers

    Inform. Primen., 1:2 (2007),  39–49
  23. Multichannel queuing system with finite buffer and unreliable servers

    Inform. Primen., 1:1 (2007),  27–39
  24. The programs for computing characteristics of the system with redundant sheaf channels

    Sistemy i Sredstva Inform., 2006, no. special issue,  126–140
  25. Multi-channel queuing systems with independent refusals and restorations of servers

    Sistemy i Sredstva Inform., 2006, no. special issue,  101–125
  26. Complex of mathematical and program tools for information and telecommunication systems modelling

    Sistemy i Sredstva Inform., 2006, no. 16,  4–31
  27. A ${MAP}_K/G_K/1/\infty$ queueing system with generalized foreground-background processor sharing discipline

    Avtomat. i Telemekh., 2004, no. 12,  110–118
  28. A finite $M\!AP_K/G_K/1$ queueing system with generalized foreground-background processor-sharing discipline

    Avtomat. i Telemekh., 2004, no. 11,  114–121
  29. Stationary characteristics of the $SM/MSP/n/r$ queuing system

    Avtomat. i Telemekh., 2004, no. 9,  85–100
  30. Exponential queuing network with dependent servicing, negative customers, and modification of the customer type

    Avtomat. i Telemekh., 2004, no. 7,  35–59
  31. Decomposition of Queueing Networks with Dependent Service and Negative Customers

    Avtomat. i Telemekh., 2004, no. 1,  97–116
  32. An SM$_{2}$/MSP/n/r System with Random-Service Discipline and a Common Buffer

    Avtomat. i Telemekh., 2003, no. 11,  106–121
  33. The Stationary Characteristics of the $G/MSP/1/r$ Queueing System

    Avtomat. i Telemekh., 2003, no. 2,  127–142
  34. A queueing system with a Markov input flow and the discipline of random selection of customers in a queue

    Avtomat. i Telemekh., 2000, no. 9,  90–96
  35. Stationary probabilities of the states of the retrial system $MAP/G/1/r$ with priority servicing of primary customers

    Avtomat. i Telemekh., 2000, no. 8,  68–78
  36. The Map/G//1/$\infty$ queue with SRPT service discipline

    Teor. Veroyatnost. i Primenen., 45:3 (2000),  589–595
  37. the system $MAP/G/1/n$ with LIFO discipline with interruption and restriction on the total number of customers

    Avtomat. i Telemekh., 1999, no. 12,  114–120
  38. On the decomposition of closed networks with dependent servicing

    Avtomat. i Telemekh., 1999, no. 11,  58–68
  39. The $BMAP/G/1/\infty$ system with a preemptive processor sharing discipline

    Avtomat. i Telemekh., 1999, no. 10,  108–114
  40. The system $M_i/G/1/n$ with the LIFO discipline and a constraint on the total number of customers

    Avtomat. i Telemekh., 1998, no. 4,  106–116
  41. Stationary state probabilities in a system with an input flow of Markov type, relative priority and separated queues

    Avtomat. i Telemekh., 1998, no. 1,  107–119
  42. An $M_k/G/1$ System with an Unreliable Device

    Avtomat. i Telemekh., 1996, no. 9,  100–110
  43. Single-Server Queuing System with Markovian Input Flow

    Avtomat. i Telemekh., 1996, no. 4,  100–110
  44. Servicing characteristics in the GI/GI/1/$\infty$ system under the LCFS discipline with interruption

    Avtomat. i Telemekh., 1993, no. 6,  130–141
  45. System with absolute continuous priorities and nonhomogeneous input flow

    Avtomat. i Telemekh., 1990, no. 10,  116–125
  46. A queueing system with a first shortest job discipline without interruption of service. II

    Avtomat. i Telemekh., 1985, no. 3,  53–61
  47. A queueing system with a first shortest job discipline without interruption of service

    Avtomat. i Telemekh., 1985, no. 2,  87–93
  48. Limit distribution for a random walk with absorption

    Teor. Veroyatnost. i Primenen., 25:3 (1980),  588–592
  49. Some limit distributions for processes with independent increments.

    Teor. Veroyatnost. i Primenen., 22:1 (1977),  179–186
  50. On Convergence of Random Sums of Random Variables to the Normal Law

    Teor. Veroyatnost. i Primenen., 18:2 (1973),  380–382


© Steklov Math. Inst. of RAS, 2024