RUS  ENG
Full version
PEOPLE

Tarkaev Vladimir Viktorovich

Publications in Math-Net.Ru

  1. An analogue of Turaev comultiplication for knots in non-orientable thickening of a non-orientable surface

    Chelyab. Fiz.-Mat. Zh., 10:1 (2025),  112–125
  2. On the sharpness of some lower bounds for the crossing number of links in thickened surfaces

    Sibirsk. Mat. Zh., 63:6 (2022),  1349–1368
  3. Recognition and tabulation of $3$-manifolds up to complexity $13$

    Chebyshevskii Sb., 21:2 (2020),  290–300
  4. Classification of prime virtual links of genus 1 with at most 4 classical crossings

    J. Comp. Eng. Math., 5:4 (2018),  33–45
  5. Classification of low complexity knotoids

    Sib. Èlektron. Mat. Izv., 15 (2018),  1237–1244
  6. A lower bound for the crossing number of links in thickened surfaces

    Sibirsk. Mat. Zh., 59:6 (2018),  1412–1422
  7. Virtual $3$-manifolds of complexity $1$ and $2$

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  257–264
  8. Classification of links of small complexity in a thickened torus

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  18–31
  9. Three-dimensional hyperbolic manifolds with cusps of complexity 10 having maximal volume

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  74–87
  10. Upper bounds for the complexity of some pretzel knots complements

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 6:3 (2014),  50–52
  11. On the cubic complexity of three-dimensional polyhedra

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  245–250
  12. On genus two three-manifolds

    Vestnik Chelyabinsk. Gos. Univ., 2009, no. 11,  105–121
  13. Компьютерная классификация расширенных диаграмм Хегора

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 8,  146–152
  14. О программной поддержке численного экспериментирования

    Vestnik Chelyabinsk. Gos. Univ., 1996, no. 3,  163–178
  15. On divergence of Fourier series with respect to permutated Price systems

    Trudy Mat. Inst. Steklov., 198 (1992),  160–185
  16. Divergence of Fourier–Walsh series

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 5,  50–53
  17. Everywhere divergent Fourier series of functions of the class $L(\ln^{+}\ln^{+}L)^{1-\varepsilon}$ in multiplicative systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 4,  3–7


© Steklov Math. Inst. of RAS, 2025