RUS  ENG
Full version
PEOPLE
Khériji Lotfi
Professor
Doctor of physico-mathematical sciences

Speciality: 01.01.00 (Mathematics)
E-mail: ,
Keywords: semiclassical form, Laguerre-Hahn form, $q$-semiclassical orthogonal polynomials, $q$-Laguerre-Hahn forms, $q$-difference equation, integral representation, discrete measure.
MSC: Primary 33C45, Secondary 42C05

Subject:

Orthogonal polynomials, special functions, the $q$- analogous.


Main publications:
  1. L. Khériji and P. Maroni, “The $H_q$-classical orthogonal polynomials”, Acta Appl. Math., 71 (2002), 49–115  crossref  mathscinet  zmath
  2. L. Khériji, “An introduction to the $H_q$-semiclassical orthogonal polynomials”, Methods Appl. Anal., 10:3 (2003), 387–412  mathscinet  zmath
  3. A. Ghressi and L. Khériji, “Some new results about a symmetric $D$-semiclassical linear form of class one”, Taiwanese J. Math., 11:2 (2007), 371–382  mathscinet  zmath
  4. A. Ghressi and L. Khériji, “Orthogonal $q$-polynomials related to perturbed linear form”, Appl. Math. E-Notes., 7 (2007), 111–120  mathscinet  zmath
  5. A. Ghressi and L. Khériji, “On the $q$-analogue of Dunkl operator ant its Appell classical orthogonal polynomials”, Int. J. Pure Appl. Math., 39:1 (2007), 1–16  mathscinet  zmath

Publications in Math-Net.Ru

Personal pages:

Organisations:


© Steklov Math. Inst. of RAS, 2024