RUS  ENG
Full version
PEOPLE

Savchenko Aleksandr Oliverovich

Publications in Math-Net.Ru

  1. Analogue of Poisson’s formula for the solution of the Helmholtz equation

    Zh. Vychisl. Mat. Mat. Fiz., 64:11 (2024),  2155–2159
  2. Solution of the exterior boundary value problem for the Helmholtz equation using overlapping domain decomposition

    Zh. Vychisl. Mat. Mat. Fiz., 62:5 (2022),  809–822
  3. A method for solving an exterior boundary value problem for the Laplace equation by overlapping domain decomposition

    Sib. Zh. Ind. Mat., 22:3 (2019),  104–113
  4. A new non-overlapping domain decomposition method for the 3-D Laplace exterior problem

    Sib. Zh. Vychisl. Mat., 21:4 (2018),  435–449
  5. Matrix of moments of the Legendre polynomials and its application to problems of electrostatics

    Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017),  163–175
  6. A method of solving an exterior three-dimensional boundary value problem for the Laplace equation

    Sib. Zh. Ind. Mat., 19:2 (2016),  88–99
  7. Functions orthogonal to polynomials and their application in axially symmetric problems in physics

    TMF, 179:2 (2014),  225–241
  8. Computation of the attractive force of an ellipsoid

    Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013),  2063–2071
  9. Осесимметричное проводящее тело в соосном электрическом поле

    Zh. Vychisl. Mat. Mat. Fiz., 53:4 (2013),  675–684
  10. Calculation of the volume potential for ellipsoidal bodies

    Sib. Zh. Ind. Mat., 15:1 (2012),  123–131
  11. Calculation of charges screening an external coaxial electric field on the surface of a conducting axial symmetric body

    Sib. Zh. Vychisl. Mat., 15:3 (2012),  321–327
  12. Ellipsoid flowed around by a harmonic vector field

    TMF, 170:3 (2012),  381–392
  13. Flow around an ellipsoid of revolution in a harmonic coaxial vector field

    Sib. Zh. Ind. Mat., 14:2 (2011),  106–111
  14. Calculation of currents on the surface of a superconducting axially symmetric body screening an external coaxial magnetic field

    Sib. Zh. Vychisl. Mat., 10:3 (2007),  317–324
  15. A high order numerical method for the integral Volterra equations with weak singularity

    Sib. Zh. Vychisl. Mat., 6:2 (2003),  181–195
  16. The optimal quadratures for numerical solving of integral Volterra equations and the Cauchy problem

    Sib. Zh. Vychisl. Mat., 4:2 (2001),  179–184


© Steklov Math. Inst. of RAS, 2025