|
|
Publications in Math-Net.Ru
-
Lurie equations and equivalent Hamiltonian systems
Avtomat. i Telemekh., 2025, no. 1, 27–43
-
On local bifurcations in nonlinear continuous-discrete dynamical systems
Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 2, 3–14
-
On stability of equilibria of nonlinear continuous-discrete dynamical systems
Ufimsk. Mat. Zh., 15:2 (2023), 85–100
-
Investigation of the problem on a parametric resonance in Lurie systems with weakly oscillating coefficients
Avtomat. i Telemekh., 2022, no. 2, 107–121
-
Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems
Ufimsk. Mat. Zh., 13:3 (2021), 178–195
-
Approximate formulas and algorithms for constructing central manifolds of dynamic systems
Avtomat. i Telemekh., 2020, no. 1, 34–51
-
Methods for studying the stability of linear periodic systems depending on a small parameter
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 163 (2019), 113–126
-
Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems
Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 3, 72–89
-
Operator methods for calculating Lyapunov values in problems on local bifurcations of dynamical systems
Ufimsk. Mat. Zh., 10:1 (2018), 25–49
-
A study of the boundaries of stability regions in two-parameter dynamical systems
Avtomat. i Telemekh., 2017, no. 10, 74–89
-
The parameter functionalization method for the problem of saddle-node bifurcations in dynamical systems
Avtomat. i Telemekh., 2017, no. 4, 63–77
-
Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 139 (2017), 114–127
-
Boundaries of stability domains for equilibrium points of differential equations with parameters
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017), 161–164
-
Mathematical modeling of dynamics of the number of specimens in a biological population under changing external conditions on the example of the Burzyan wild-hive honeybee (Apismellifera L., 1758)
Mat. Biolog. Bioinform., 12:1 (2017), 224–236
-
The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems
Ufimsk. Mat. Zh., 8:3 (2016), 59–81
-
Study of main scenarios of bifurcation for functional differential time-delay equations
Ufimsk. Mat. Zh., 6:2 (2014), 104–112
-
Localization of Arnold tongues of discrete dynamical systems
Ufimsk. Mat. Zh., 5:2 (2013), 109–131
-
Operator method for the study of small oscillations in systems with aftereffect
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 9/2(110), 37–42
-
A study of local bifurcations of forced oscillations in dynamical systems
Avtomat. i Telemekh., 2012, no. 4, 83–98
-
Bifurcations of periodic solutions near triangular libration points in the three-body problem
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 6, 82–89
-
An operator method for approximate investigation of a regular bifurcation in multiparameter dynamical systems
Ufimsk. Mat. Zh., 2:4 (2010), 3–26
-
Inverse spectral problems of the theory of identification of linear dynamic systems
Avtomat. i Telemekh., 2009, no. 11, 13–20
-
An operator method for studying regular bifurcations in multiparameter systems
Dokl. Akad. Nauk, 424:2 (2009), 177–180
-
The investigation algorithm of stability of periodic oscillations in the problem for the Andronov–Hopf bifurcation
Avtomat. i Telemekh., 2008, no. 12, 47–52
-
The Andronov–Hopf bifurcation with weakly oscillating parameters
Avtomat. i Telemekh., 2008, no. 1, 39–44
-
Parameter functionalization and its application to the problem of local bifurcations in dynamic systems
Avtomat. i Telemekh., 2007, no. 4, 3–12
-
Методы теории вращения векторных полей в задаче о бифуркации Андронова–Хопфа
Matem. Mod. Kraev. Zadachi, 3 (2005), 183–184
-
The Method of Elementary Components for Approximately Studying Systems with Complex Delay
Avtomat. i Telemekh., 2003, no. 12, 10–16
-
Pulse-Frequency Characteristics in Bifurcation Problems
Avtomat. i Telemekh., 2002, no. 5, 34–40
-
Analysis of the convergence of discrete and projection procedures for constructing cycles in the Hopf bifurcation problem
Avtomat. i Telemekh., 1999, no. 9, 3–12
-
Tests for the sub- and supercriticality of the Hopf bifurcation and problems of one-sided bifurcation
Avtomat. i Telemekh., 1998, no. 12, 51–59
-
Cycle Stability Conditions under Hopf Bifurcations at Infinity
Avtomat. i Telemekh., 1997, no. 1, 56–62
-
Convolution-type operators in spaces of summable functions
generated by different measures
Dokl. Akad. Nauk, 353:1 (1997), 23–25
-
An Operator Method for Cycle Stability Analysis in the Hopf Bifurcation
Avtomat. i Telemekh., 1996, no. 12, 15–24
-
Functionalization of a Parameter and Cycle Asymptotics in the Hopf Bifurcation
Avtomat. i Telemekh., 1996, no. 11, 22–28
-
Input-state-output relations for lag-type elements
Avtomat. i Telemekh., 1995, no. 7, 16–23
-
Localization and construction of cycles for the Hopf bifurcation
at infinity
Dokl. Akad. Nauk, 344:4 (1995), 446–449
-
The state space method in the theory of linear links with complex delays
Avtomat. i Telemekh., 1994, no. 6, 43–52
-
Impulse characteristic of a linear link with complex delays
Avtomat. i Telemekh., 1993, no. 6, 106–112
-
Approximate investigation of small periodic oscillations of automatic control systems
Avtomat. i Telemekh., 1993, no. 3, 101–108
-
Expansion of a periodic Green function of equations with
aftereffect in series of exponential solutions
Dokl. Akad. Nauk, 331:4 (1993), 406–408
-
A method for the functionalization of the parameter in iterative
procedures for investigating the Hopf bifurcation for equations with
aftereffect
Dokl. Akad. Nauk, 331:1 (1993), 24–27
-
The method of parameter functionalization in approximate computation of weak auto-oscillating modes
Avtomat. i Telemekh., 1988, no. 10, 76–84
-
Stable oscillations with large averages in multiloop systems
Avtomat. i Telemekh., 1985, no. 7, 93–95
© , 2025