RUS  ENG
Full version
PEOPLE

Yumagulov Marat Gayazovich

Publications in Math-Net.Ru

  1. Lurie equations and equivalent Hamiltonian systems

    Avtomat. i Telemekh., 2025, no. 1,  27–43
  2. On local bifurcations in nonlinear continuous-discrete dynamical systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 2,  3–14
  3. On stability of equilibria of nonlinear continuous-discrete dynamical systems

    Ufimsk. Mat. Zh., 15:2 (2023),  85–100
  4. Investigation of the problem on a parametric resonance in Lurie systems with weakly oscillating coefficients

    Avtomat. i Telemekh., 2022, no. 2,  107–121
  5. Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems

    Ufimsk. Mat. Zh., 13:3 (2021),  178–195
  6. Approximate formulas and algorithms for constructing central manifolds of dynamic systems

    Avtomat. i Telemekh., 2020, no. 1,  34–51
  7. Methods for studying the stability of linear periodic systems depending on a small parameter

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 163 (2019),  113–126
  8. Bifurcation formulas and algorithms of constructing central manifolds of discrete dynamical systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 3,  72–89
  9. Operator methods for calculating Lyapunov values in problems on local bifurcations of dynamical systems

    Ufimsk. Mat. Zh., 10:1 (2018),  25–49
  10. A study of the boundaries of stability regions in two-parameter dynamical systems

    Avtomat. i Telemekh., 2017, no. 10,  74–89
  11. The parameter functionalization method for the problem of saddle-node bifurcations in dynamical systems

    Avtomat. i Telemekh., 2017, no. 4,  63–77
  12. Basic bifurcation scenarios in neighborhoods of boundaries of stability regions of libration points in the three-body problem

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 139 (2017),  114–127
  13. Boundaries of stability domains for equilibrium points of differential equations with parameters

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017),  161–164
  14. Mathematical modeling of dynamics of the number of specimens in a biological population under changing external conditions on the example of the Burzyan wild-hive honeybee (Apismellifera L., 1758)

    Mat. Biolog. Bioinform., 12:1 (2017),  224–236
  15. The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems

    Ufimsk. Mat. Zh., 8:3 (2016),  59–81
  16. Study of main scenarios of bifurcation for functional differential time-delay equations

    Ufimsk. Mat. Zh., 6:2 (2014),  104–112
  17. Localization of Arnold tongues of discrete dynamical systems

    Ufimsk. Mat. Zh., 5:2 (2013),  109–131
  18. Operator method for the study of small oscillations in systems with aftereffect

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 9/2(110),  37–42
  19. A study of local bifurcations of forced oscillations in dynamical systems

    Avtomat. i Telemekh., 2012, no. 4,  83–98
  20. Bifurcations of periodic solutions near triangular libration points in the three-body problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 6,  82–89
  21. An operator method for approximate investigation of a regular bifurcation in multiparameter dynamical systems

    Ufimsk. Mat. Zh., 2:4 (2010),  3–26
  22. Inverse spectral problems of the theory of identification of linear dynamic systems

    Avtomat. i Telemekh., 2009, no. 11,  13–20
  23. An operator method for studying regular bifurcations in multiparameter systems

    Dokl. Akad. Nauk, 424:2 (2009),  177–180
  24. The investigation algorithm of stability of periodic oscillations in the problem for the Andronov–Hopf bifurcation

    Avtomat. i Telemekh., 2008, no. 12,  47–52
  25. The Andronov–Hopf bifurcation with weakly oscillating parameters

    Avtomat. i Telemekh., 2008, no. 1,  39–44
  26. Parameter functionalization and its application to the problem of local bifurcations in dynamic systems

    Avtomat. i Telemekh., 2007, no. 4,  3–12
  27. Методы теории вращения векторных полей в задаче о бифуркации Андронова–Хопфа

    Matem. Mod. Kraev. Zadachi, 3 (2005),  183–184
  28. The Method of Elementary Components for Approximately Studying Systems with Complex Delay

    Avtomat. i Telemekh., 2003, no. 12,  10–16
  29. Pulse-Frequency Characteristics in Bifurcation Problems

    Avtomat. i Telemekh., 2002, no. 5,  34–40
  30. Analysis of the convergence of discrete and projection procedures for constructing cycles in the Hopf bifurcation problem

    Avtomat. i Telemekh., 1999, no. 9,  3–12
  31. Tests for the sub- and supercriticality of the Hopf bifurcation and problems of one-sided bifurcation

    Avtomat. i Telemekh., 1998, no. 12,  51–59
  32. Cycle Stability Conditions under Hopf Bifurcations at Infinity

    Avtomat. i Telemekh., 1997, no. 1,  56–62
  33. Convolution-type operators in spaces of summable functions generated by different measures

    Dokl. Akad. Nauk, 353:1 (1997),  23–25
  34. An Operator Method for Cycle Stability Analysis in the Hopf Bifurcation

    Avtomat. i Telemekh., 1996, no. 12,  15–24
  35. Functionalization of a Parameter and Cycle Asymptotics in the Hopf Bifurcation

    Avtomat. i Telemekh., 1996, no. 11,  22–28
  36. Input-state-output relations for lag-type elements

    Avtomat. i Telemekh., 1995, no. 7,  16–23
  37. Localization and construction of cycles for the Hopf bifurcation at infinity

    Dokl. Akad. Nauk, 344:4 (1995),  446–449
  38. The state space method in the theory of linear links with complex delays

    Avtomat. i Telemekh., 1994, no. 6,  43–52
  39. Impulse characteristic of a linear link with complex delays

    Avtomat. i Telemekh., 1993, no. 6,  106–112
  40. Approximate investigation of small periodic oscillations of automatic control systems

    Avtomat. i Telemekh., 1993, no. 3,  101–108
  41. Expansion of a periodic Green function of equations with aftereffect in series of exponential solutions

    Dokl. Akad. Nauk, 331:4 (1993),  406–408
  42. A method for the functionalization of the parameter in iterative procedures for investigating the Hopf bifurcation for equations with aftereffect

    Dokl. Akad. Nauk, 331:1 (1993),  24–27
  43. The method of parameter functionalization in approximate computation of weak auto-oscillating modes

    Avtomat. i Telemekh., 1988, no. 10,  76–84
  44. Stable oscillations with large averages in multiloop systems

    Avtomat. i Telemekh., 1985, no. 7,  93–95


© Steklov Math. Inst. of RAS, 2025