|
|
Publications in Math-Net.Ru
-
Additive differentials for ARX mappings with probability exceeding $1/4$
Diskretn. Anal. Issled. Oper., 31:2 (2024), 108–135
-
On permutations that break subspaces of specified dimensions
Prikl. Diskr. Mat., 2024, no. 65, 5–20
-
On the number of functions that break subspaces of dimension $3$ and higher
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 34–37
-
On the number of the closest bent functions to some Maiorana–McFarland bent functions
Prikl. Diskr. Mat. Suppl., 2024, no. 17, 24–27
-
On a lower bound for the number of bent functions at the minimum distance from a bent function in the Maiorana–McfFrland class
Diskretn. Anal. Issled. Oper., 30:3 (2023), 57–80
-
Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO
Prikl. Diskr. Mat., 2023, no. 62, 29–54
-
On additive differential probabilities of a composition of bitwise XORs
Prikl. Diskr. Mat., 2023, no. 60, 59–75
-
On additive differentials that go through ARX transfromation with high probability
Prikl. Diskr. Mat. Suppl., 2023, no. 16, 70–73
-
On the number of impossible differentials of some ARX transformation
Prikl. Diskr. Mat. Suppl., 2023, no. 16, 47–50
-
On preserving the structure of a subspace by a vectorial Boolean function
Prikl. Diskr. Mat. Suppl., 2023, no. 16, 23–26
-
Invariant subspaces of functions affine equivalent to the finite field inversion
Prikl. Diskr. Mat. Suppl., 2022, no. 15, 5–8
-
On properties of additive differential probabilities of XOR
Prikl. Diskr. Mat. Suppl., 2021, no. 14, 46–48
-
Properties of bent functions constructed by a given bent function using subspaces
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 50–53
-
Mathematical methods in solutions of the problems presented at the Third International Students' Olympiad in Cryptography
Prikl. Diskr. Mat., 2018, no. 40, 34–58
-
Properties of a bent function construction by a subspace of an arbitrary dimension
Prikl. Diskr. Mat. Suppl., 2018, no. 11, 41–43
-
A bent function construction by a bent function that is affine on several cosets of a linear subspace
Prikl. Diskr. Mat. Suppl., 2017, no. 10, 41–42
-
A graph of minimal distances between bent functions
Mat. Vopr. Kriptogr., 7:2 (2016), 103–110
-
On the Hamming distance between two bent functions
Prikl. Diskr. Mat. Suppl., 2016, no. 9, 27–28
-
Problems, solutions and experience of the first international student's Olympiad in cryptography
Prikl. Diskr. Mat., 2015, no. 3(29), 41–62
-
On the minimal distance graph connectivity for bent functions
Prikl. Diskr. Mat. Suppl., 2015, no. 8, 33–34
-
A threshold property of quadratic Boolean functions
Diskretn. Anal. Issled. Oper., 21:2 (2014), 52–58
-
On a property of quadratic Boolean functions
Mat. Vopr. Kriptogr., 5:2 (2014), 79–85
-
An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
Prikl. Diskr. Mat., 2014, no. 3(25), 28–39
-
An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
Prikl. Diskr. Mat. Suppl., 2014, no. 7, 22–24
-
An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity
Prikl. Diskr. Mat., 2013, no. 1(19), 14–16
-
An affine property of Boolean functions on subspaces and their shifts
Prikl. Diskr. Mat. Suppl., 2013, no. 6, 15–16
-
Enumeration of bent functions on the minimal distance from the quadratic bent function
Diskretn. Anal. Issled. Oper., 19:1 (2012), 41–58
-
On nonlinearity of some Boolean functions with maximal algebraic immunity
Prikl. Diskr. Mat. Suppl., 2012, no. 5, 13–14
-
“Boolean Functions” is a system for the work with boolean functions
Prikl. Diskr. Mat., 2011, no. supplement № 4, 67–68
-
The number of bent functions on the minimal distance from a quadratic bent function
Prikl. Diskr. Mat., 2011, no. supplement № 4, 9–11
-
Connections between subspaces on which bent function and its dual function are affine
Prikl. Diskr. Mat., 2010, no. supplement № 3, 11–12
-
Properties of bent functions with minimal distance
Prikl. Diskr. Mat., 2009, no. supplement № 1, 9–10
-
Properties of bent functions with minimal distance
Prikl. Diskr. Mat., 2009, no. 4(6), 5–20
-
An overview of the Eight International Olympiad in Cryptography “Non-Stop University CRYPTO”
Sib. Èlektron. Mat. Izv., 19:1 (2022), 9–37
-
On the Sixth International Olympiad in Cryptography NSUCRYPTO
Diskretn. Anal. Issled. Oper., 27:4 (2020), 21–57
© , 2024