RUS  ENG
Full version
PEOPLE

Kolomeets Nikolai Aleksandrovich

Publications in Math-Net.Ru

  1. Additive differentials for ARX mappings with probability exceeding $1/4$

    Diskretn. Anal. Issled. Oper., 31:2 (2024),  108–135
  2. On permutations that break subspaces of specified dimensions

    Prikl. Diskr. Mat., 2024, no. 65,  5–20
  3. On the number of functions that break subspaces of dimension $3$ and higher

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  34–37
  4. On the number of the closest bent functions to some Maiorana–McFarland bent functions

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  24–27
  5. On a lower bound for the number of bent functions at the minimum distance from a bent function in the Maiorana–McfFrland class

    Diskretn. Anal. Issled. Oper., 30:3 (2023),  57–80
  6. Mathematical problems and solutions of the Ninth International Olympiad in Cryptography NSUCRYPTO

    Prikl. Diskr. Mat., 2023, no. 62,  29–54
  7. On additive differential probabilities of a composition of bitwise XORs

    Prikl. Diskr. Mat., 2023, no. 60,  59–75
  8. On additive differentials that go through ARX transfromation with high probability

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  70–73
  9. On the number of impossible differentials of some ARX transformation

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  47–50
  10. On preserving the structure of a subspace by a vectorial Boolean function

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  23–26
  11. Invariant subspaces of functions affine equivalent to the finite field inversion

    Prikl. Diskr. Mat. Suppl., 2022, no. 15,  5–8
  12. On properties of additive differential probabilities of XOR

    Prikl. Diskr. Mat. Suppl., 2021, no. 14,  46–48
  13. Properties of bent functions constructed by a given bent function using subspaces

    Prikl. Diskr. Mat. Suppl., 2019, no. 12,  50–53
  14. Mathematical methods in solutions of the problems presented at the Third International Students' Olympiad in Cryptography

    Prikl. Diskr. Mat., 2018, no. 40,  34–58
  15. Properties of a bent function construction by a subspace of an arbitrary dimension

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  41–43
  16. A bent function construction by a bent function that is affine on several cosets of a linear subspace

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  41–42
  17. A graph of minimal distances between bent functions

    Mat. Vopr. Kriptogr., 7:2 (2016),  103–110
  18. On the Hamming distance between two bent functions

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  27–28
  19. Problems, solutions and experience of the first international student's Olympiad in cryptography

    Prikl. Diskr. Mat., 2015, no. 3(29),  41–62
  20. On the minimal distance graph connectivity for bent functions

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  33–34
  21. A threshold property of quadratic Boolean functions

    Diskretn. Anal. Issled. Oper., 21:2 (2014),  52–58
  22. On a property of quadratic Boolean functions

    Mat. Vopr. Kriptogr., 5:2 (2014),  79–85
  23. An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables

    Prikl. Diskr. Mat., 2014, no. 3(25),  28–39
  24. An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables

    Prikl. Diskr. Mat. Suppl., 2014, no. 7,  22–24
  25. An upper bound for the nonlinearity of some Boolean functions with maximal possible algebraic immunity

    Prikl. Diskr. Mat., 2013, no. 1(19),  14–16
  26. An affine property of Boolean functions on subspaces and their shifts

    Prikl. Diskr. Mat. Suppl., 2013, no. 6,  15–16
  27. Enumeration of bent functions on the minimal distance from the quadratic bent function

    Diskretn. Anal. Issled. Oper., 19:1 (2012),  41–58
  28. On nonlinearity of some Boolean functions with maximal algebraic immunity

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  13–14
  29. “Boolean Functions” is a system for the work with boolean functions

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  67–68
  30. The number of bent functions on the minimal distance from a quadratic bent function

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  9–11
  31. Connections between subspaces on which bent function and its dual function are affine

    Prikl. Diskr. Mat., 2010, no. supplement № 3,  11–12
  32. Properties of bent functions with minimal distance

    Prikl. Diskr. Mat., 2009, no. supplement № 1,  9–10
  33. Properties of bent functions with minimal distance

    Prikl. Diskr. Mat., 2009, no. 4(6),  5–20

  34. An overview of the Eight International Olympiad in Cryptography “Non-Stop University CRYPTO”

    Sib. Èlektron. Mat. Izv., 19:1 (2022),  9–37
  35. On the Sixth International Olympiad in Cryptography NSUCRYPTO

    Diskretn. Anal. Issled. Oper., 27:4 (2020),  21–57


© Steklov Math. Inst. of RAS, 2024