RUS  ENG
Full version
PEOPLE

Diesperov Vadim Nikolaevich

Publications in Math-Net.Ru

  1. Nonclassical transonic boundary layers: toward overcoming dead-end situations in high-speed aerodynamics

    Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018),  270–280
  2. Triple-deck theory in transonic flows and boundary layer stability

    Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010),  2208–2222
  3. Triple-deck analysis of formation of supersonic and local separation regions in transonic steady flow over a roughness element on the surface of a body of revolution

    Zh. Vychisl. Mat. Mat. Fiz., 49:7 (2009),  1295–1305
  4. Triple-deck analysis of formation and evolution of supersonic zones and local separation zones in unsteady transonic flow over a surface roughness element

    Zh. Vychisl. Mat. Mat. Fiz., 45:3 (2005),  536–544
  5. The structure of an unsteady transonic flow around a flat plate with transverse slot injection

    Zh. Vychisl. Mat. Mat. Fiz., 42:11 (2002),  1744–1755
  6. Exact solution of the von Kármán–Fal'kovich equation that describes the separation from the corner point of a profile

    Dokl. Akad. Nauk SSSR, 306:3 (1989),  561–565
  7. Flow in a Chapman mixing layer

    Dokl. Akad. Nauk SSSR, 284:2 (1985),  305–309
  8. Existence and uniqueness of self-similar solutions describing a flow in mixing layers

    Dokl. Akad. Nauk SSSR, 275:6 (1984),  1341–1346
  9. Boundary layer with self-induced pressure in transonic flow over a corner point of a profile

    Dokl. Akad. Nauk SSSR, 271:3 (1983),  562–566
  10. The structure of the boundary layer for transonic flow around a convex corner with a free streamline

    Dokl. Akad. Nauk SSSR, 257:6 (1981),  1314–1318
  11. Calculation of the volt-ampere characteristics of a nonindependent volumetric electrical discharge

    Prikl. Mekh. Tekh. Fiz., 22:1 (1981),  48–60
  12. Kármán-equation solution describing the flow around a convex angle

    Dokl. Akad. Nauk SSSR, 254:6 (1980),  1367–1371
  13. Asymptotic properties of the solution of a certain boundary value problem for the viscous transonic equation

    Zh. Vychisl. Mat. Mat. Fiz., 16:2 (1976),  470–481
  14. A certain boundary value problem for the linearized axially symmetric viscous transonic equation

    Zh. Vychisl. Mat. Mat. Fiz., 14:5 (1974),  1244–1260
  15. The Green's function of the linearized viscous transonic equation

    Zh. Vychisl. Mat. Mat. Fiz., 12:5 (1972),  1265–1279
  16. On the uniform flow about finite bodies in transonic velocity range

    Zh. Vychisl. Mat. Mat. Fiz., 11:1 (1971),  208–221
  17. A problem of the motion of a viscous and heat conducting gas

    Zh. Vychisl. Mat. Mat. Fiz., 9:6 (1969),  1357–1366
  18. Solids of revolution in a sonic flow of ideal gas

    Zh. Vychisl. Mat. Mat. Fiz., 9:1 (1969),  164–176
  19. A second approximation in the theory of asymptotic damping of disturbances in supersonic flow of a viscous heat-conducting gas

    Dokl. Akad. Nauk SSSR, 181:4 (1968),  815–818
  20. Damping of perturbations produced by a solid of revolution in a viscous heatconducting supersonic gas flow

    Dokl. Akad. Nauk SSSR, 175:1 (1967),  51–54

  21. Evgenii Sergeevich Polovinkin (on his 70th birthday)

    Uspekhi Mat. Nauk, 71:5(431) (2016),  187–190


© Steklov Math. Inst. of RAS, 2024