RUS  ENG
Full version
PEOPLE

Kalinin Anatoly Iosifovich

Publications in Math-Net.Ru

  1. The small parameter method in the optimisation of a quasi-linear dynamical system problem

    Journal of the Belarusian State University. Mathematics and Informatics, 2 (2022),  23–33
  2. Asymptotic method for solving a singularly perturbed linear-quadratic optimal control problem with a moving right end of trajectories

    Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022),  23–35
  3. Small parameter method in optimization problems of singularly perturbed dynamical systems

    Tr. Inst. Mat., 29:1-2 (2021),  85–93
  4. Asymptotic approximations to the solution of the singularly perturbed linear-quadratic optimal control problem with terminal path constraints

    Avtomat. i Telemekh., 2020, no. 6,  29–46
  5. On asymptotic optimization methods for quasilinear control systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  62–72
  6. To the synthesis of optimal control systems

    Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018),  397–402
  7. Application of the small parameter method to the singularly perturbed linear-quadratic optimal control problem

    Avtomat. i Telemekh., 2016, no. 5,  3–18
  8. Asymptotically suboptimal control of weakly interconnected dynamical systems

    Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016),  1711–1724
  9. Asymptotics of the solution to a singularly perturbed linear-quadratic optimal control problem

    Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015),  194–206
  10. Construction of suboptimal solution of the singularly perturbed problem of minimal-intensity control

    Avtomat. i Telemekh., 2013, no. 1,  47–58
  11. Asymptotic solution method for the control of the minimal force for a linear singularly perturbed system

    Zh. Vychisl. Mat. Mat. Fiz., 51:12 (2011),  2115–2125
  12. Asymptotic behavior of the solution of a singularly perturbed linear-quadratic terminal control problem

    Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010),  423–433
  13. Asymptotic method for solving the time-optimal control problem for a nonlinear singularly perturbed system

    Zh. Vychisl. Mat. Mat. Fiz., 48:11 (2008),  1942–1951
  14. Asymptotic solution of the optimal speed problem for the quasilinear system under Euclidean constraint on control

    Avtomat. i Telemekh., 2007, no. 8,  106–115
  15. Asymptotic optimization method for a quasilinear system with multidimensional controls

    Differ. Uravn., 42:12 (2006),  1604–1611
  16. An asymptotic solution to a singularly perturbed time-optimal control problem

    Zh. Vychisl. Mat. Mat. Fiz., 45:11 (2005),  1963–1968
  17. The asymptotic optimization method for linear singularly perturbed systems with the multidimensional control

    Zh. Vychisl. Mat. Mat. Fiz., 44:3 (2004),  432–443
  18. Minimization of the total momentum of control drive on the trajectories of linear singularly perturbed systems

    Zh. Vychisl. Mat. Mat. Fiz., 42:10 (2002),  1475–1486
  19. Optimal control of nonlinear systems

    Zh. Vychisl. Mat. Mat. Fiz., 42:7 (2002),  969–995
  20. Asymptotics of the solution to a linear singularly perturbed optimal control problem with phase constraints

    Zh. Vychisl. Mat. Mat. Fiz., 40:1 (2000),  54–64
  21. Asymptotic optimization of linear dynamical systems in the class of smooth bounded controls

    Differ. Uravn., 34:2 (1998),  175–183
  22. An asymptotic method for a singularly perturbed linear-quadratic optimal control problem

    Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998),  1473–1483
  23. Stabilization of Linear Dynamic Systems by Low-Inertia Controls. II. Continuous Stabilizer

    Avtomat. i Telemekh., 1997, no. 5,  45–52
  24. Stabilization of Linear Dynamic Systems by Low-Inertia Controls. I. The Accompanying Optimal Control Problem

    Avtomat. i Telemekh., 1997, no. 4,  14–21
  25. Asymptotic minimization of the full moment of control actions

    Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1427–1438
  26. Optimization of systems with multidimensional controls according to criteria that are invariant with respect to some of the control actions

    Zh. Vychisl. Mat. Mat. Fiz., 36:1 (1996),  52–65
  27. Asymptotic behavior of the solution of the time optimality problem for a linear singularly perturbed system that contains parameters of variable orders of smallness at the derivatives

    Differ. Uravn., 31:8 (1995),  1275–1284
  28. Asymptotic optimization of a linear singularly perturbed system containing parameters of variable orders of smallness at the derivatives

    Zh. Vychisl. Mat. Mat. Fiz., 35:9 (1995),  1299–1312
  29. Asymptotic optimization of linear dynamical systems in a class of low-inertia controls

    Avtomat. i Telemekh., 1994, no. 4,  38–46
  30. An asymptotically optimal controller for a quasilinear system

    Dokl. Akad. Nauk, 332:2 (1993),  138–141
  31. An algorithm for the asymptotic solution of a singularly perturbed nonlinear time-optimality problem

    Differ. Uravn., 29:4 (1993),  585–596
  32. An algorithm for the asymptotic solution of the problem of the terminal control of a nonlinear singularly perturbed system

    Zh. Vychisl. Mat. Mat. Fiz., 33:12 (1993),  1762–1775
  33. Asymptotic optimization of nonlinear regularly perturbed control systems

    Zh. Vychisl. Mat. Mat. Fiz., 31:8 (1991),  1160–1172
  34. An asymptotic method for constructing optimal controls with singular intervals

    Dokl. Akad. Nauk SSSR, 314:1 (1990),  62–67
  35. The perturbation method for the asymptotic solution of a quasilinear time-optimality problem

    Differ. Uravn., 26:4 (1990),  585–594
  36. A method for the asymptotic solution of singularly perturbed linear terminal control problems

    Zh. Vychisl. Mat. Mat. Fiz., 30:3 (1990),  366–378
  37. Asymptotic optimization of linear singularly perturbed control systems

    Differ. Uravn., 25:10 (1989),  1687–1698
  38. Optimization of quasilinear control systems

    Zh. Vychisl. Mat. Mat. Fiz., 28:3 (1988),  325–334
  39. An optimization algorithm for a quasilinear control system

    Dokl. Akad. Nauk SSSR, 293:1 (1987),  22–26
  40. On the problem of singular optimal controls

    Differ. Uravn., 21:3 (1985),  380–385
  41. A method for the improvement of attainable controls in discrete systems

    Differ. Uravn., 14:2 (1978),  338–344
  42. Necessary optimality conditions for singular controls

    Differ. Uravn., 9:3 (1973),  568–573
  43. The connection between the Bellman function and matrix impulses

    Differ. Uravn., 8:8 (1972),  1501–1504

  44. Rafail Gabasov — on the occasion of the 80th birthday

    Bulletin of Irkutsk State University. Series Mathematics, 15 (2016),  108–120


© Steklov Math. Inst. of RAS, 2025