RUS  ENG
Full version
PEOPLE

Podinovski Vladislav Vladimirovich

Publications in Math-Net.Ru

  1. Approximation of tabulated functions: A multi-criteria approach. Part II

    Zh. Vychisl. Mat. Mat. Fiz., 65:4 (2025),  426–433
  2. Mean values: a multicriteria approach. Part III

    Probl. Upr., 2024, no. 1,  17–22
  3. Approximation of functions defined in tabular form: multicriteria approach

    Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023),  717–730
  4. Multicriteria problems with importance-ordered criteria groups

    Avtomat. i Telemekh., 2022, no. 7,  119–136
  5. Means: a multicriteria approach. Part II

    Probl. Upr., 2021, no. 2,  33–41
  6. Mean quantities: a multicriteria approach

    Probl. Upr., 2020, no. 5,  3–16
  7. Analysis of decisions under uncertainty with non-numeric assessment of preferences and probabilities

    Probl. Upr., 2020, no. 1,  48–58
  8. Analysis of the sensitivity of solutions of multi-criteria problems based on parametric partial preference relations

    Avtomat. i Telemekh., 2019, no. 7,  142–154
  9. Sensitivity analysis of multicriteria choice to changes in intervals of value tradeoffs

    Zh. Vychisl. Mat. Mat. Fiz., 58:3 (2018),  485–494
  10. Conciliative solutions for multicriterial choice problems

    Probl. Upr., 2017, no. 2,  17–26
  11. Reper functions

    UBS, 68 (2017),  30–46
  12. Multicriteria choice based on criteria importance methods with uncertain preference information

    Zh. Vychisl. Mat. Mat. Fiz., 57:9 (2017),  1494–1502
  13. Measures of risk as criteria for choice under probabilistic uncertainty

    Artificial Intelligence and Decision Making, 2015, no. 2,  60–74
  14. Analytic decision rules for importance-ordered criteria with a first ordered metric scale in the general form

    Avtomat. i Telemekh., 2014, no. 9,  97–107
  15. Potential non-dominance in choice problems with imprecise preference information

    Artificial Intelligence and Decision Making, 2014, no. 4,  83–95
  16. Analysis of hierarchical multicriterial decision making problems using methods of criteria importance theory

    Probl. Upr., 2014, no. 6,  2–8
  17. Potential optimality in multicriterial optimization

    Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  415–424
  18. Количественная важность критериев и аддитивные функции ценности

    Zh. Vychisl. Mat. Mat. Fiz., 53:1 (2013),  133–142
  19. Analytical decision rules using importance-ordered criteria with a scale of the first ordinal metric

    Avtomat. i Telemekh., 2012, no. 5,  84–96
  20. On the relation of the notions of potential optimality and non-dominance

    Avtomat. i Telemekh., 2012, no. 1,  184–187
  21. Another note on the incorrectness of the analytic hierarchy process

    Probl. Upr., 2012, no. 4,  75–78
  22. Algorithmic decision rule using ordinal criteria importance coefficients with a first ordinal metric scale

    Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012),  48–65
  23. On the theoretical incorrectness of the analytic hierarchy process

    Probl. Upr., 2011, no. 1,  8–13
  24. Bilinear optimization in the analysis of multicriteria problems using criteria importance theory under inexact information about preferences

    Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011),  802–813
  25. Using interval information on relative criteria tradeoffs in analyzing multicriterial decision making problems

    Avtomat. i Telemekh., 2010, no. 8,  154–167
  26. The choice of several best objects with respect to a partial preference relation

    Dokl. Akad. Nauk, 424:5 (2009),  604–606
  27. Sensitivity analysis for set choice problems with incomplete preferences of the decision maker

    Artificial Intelligence and Decision Making, 2009, no. 4,  45–52
  28. Forming a collection of the best objects at partial information about preferences

    Artificial Intelligence and Decision Making, 2008, no. 4,  3–11
  29. Parametric importance of criteria and intervals of value tradeoff uncertainty in the analysis of multicriteria problems

    Zh. Vychisl. Mat. Mat. Fiz., 48:11 (2008),  1979–1998
  30. Preference relation with intervals of value tradeoff uncertainty

    Avtomat. i Telemekh., 2007, no. 6,  157–165
  31. Quantitative importance of criteria with the scale of the first ordinal metric and convex preferences

    Avtomat. i Telemekh., 2006, no. 3,  186–189
  32. The quantitative importance of criteria with a continuous first-order metric scale

    Avtomat. i Telemekh., 2005, no. 9,  129–137
  33. Decision under multiple estimates for the importance coefficients of criteria and probabilities of values of uncertain factors in the aim function

    Avtomat. i Telemekh., 2004, no. 11,  141–159
  34. The quantitative importance of criteria with discrete first-order metric scale

    Avtomat. i Telemekh., 2004, no. 8,  196–203
  35. The Problem of Estimation of Importance Factors as a Symmetric-Lexicographic Problem of Optimization

    Avtomat. i Telemekh., 2003, no. 3,  150–162
  36. The quantitative importance of criteria

    Avtomat. i Telemekh., 2000, no. 5,  110–123
  37. Effectiveness of decision. rules in multicriterial several variants choice problems

    Avtomat. i Telemekh., 1990, no. 12,  136–142
  38. Constructing the preference relation and the core in multicriterion problems with inhomogeneous criteria ordered by importance

    Zh. Vychisl. Mat. Mat. Fiz., 28:5 (1988),  647–659
  39. On non-contradictory extension of preference relations in decision-making problems

    Zh. Vychisl. Mat. Mat. Fiz., 24:6 (1984),  831–839
  40. On design of decision rulse in decision making problems

    Avtomat. i Telemekh., 1981, no. 6,  128–138
  41. Generalized antagonistic games

    Zh. Vychisl. Mat. Mat. Fiz., 21:5 (1981),  1140–1153
  42. The principle of guaranteed result for partial preference relations

    Zh. Vychisl. Mat. Mat. Fiz., 19:6 (1979),  1436–1450
  43. Criterion importance coefficients in decision-making problems ordinal coefficients

    Avtomat. i Telemekh., 1978, no. 10,  130–141
  44. Construction of the set of effective strategies in a multi-criterion problem with importance-ordered criteria

    Zh. Vychisl. Mat. Mat. Fiz., 18:4 (1978),  908–915
  45. Multi-criterion problems with importance ordered homogeneous criteria

    Avtomat. i Telemekh., 1976, no. 11,  118–127
  46. Multicriterion problems with homogeneous equivalent criteria

    Zh. Vychisl. Mat. Mat. Fiz., 15:2 (1975),  330–344
  47. Lexicographic problems of linear programming

    Zh. Vychisl. Mat. Mat. Fiz., 12:6 (1972),  1568–1571
  48. Применение процедуры максимизации основного локального критерия для решения задач теории векторной оптимизации

    Upravliaemie systemy, 1970, no. 6,  17–22


© Steklov Math. Inst. of RAS, 2025