RUS  ENG
Full version
PEOPLE

Starchenko Aleksandr Vasil'evich

Publications in Math-Net.Ru

  1. A microscale mathematical model of a non-isothermal turbulent flow and transport of a passive gaseous pollutant in a street canyon

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 85,  117–131
  2. Numerical simulation of the distribution of vehicle emissions in a street canyon

    Matem. Mod., 34:10 (2022),  81–94
  3. Numerical simulation of air quality over a Tomsk city in light wind

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 79,  25–43
  4. Numerical solution of the direct problem of electroimpedance tomography in a complete electrode formulation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 78,  5–21
  5. An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 74,  19–29
  6. Mesoscale meteorological model TSUNM3 for the study and forecast of meteorological parameters of the atmospheric surface layer over a major population center

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 66,  35–55
  7. Numerical modelling of pollution transport in Tom river

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 64,  48–62
  8. The finite-difference scheme for the unsteady convection-diffusion equation based on weighted local cubic spline interpolation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 49,  61–74
  9. Numerical investigation of a two-phase flow of fluid with light particles in open channels

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 6(44),  88–103
  10. A mathematical model and numerical method for computation of a turbulent river stream

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 6(38),  100–114
  11. Application of the two-parametric $k-\omega$ turbulence model for studying the thermal bar phenomenon

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 5(31),  104–113
  12. Finite volume schemes for the electrical impedance tomography problem

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 3(29),  25–38
  13. Numerical model of river–lake interaction in the case of a spring thermal bar in Kamloops lake

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 5(25),  102–115
  14. Application of a microscale meteorological model for studying the airflow pattern above the airport runway

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 5(25),  91–101
  15. Study of airflow and pollutant transport in an urban street canyon using large eddy simulation of the turbulent flow

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 4(20),  66–79
  16. Numerical method for reconstructing the electrical impedance distribution in biological objects using current measurements at the boundary

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 4(20),  36–49
  17. Numerical solution of Navier–Stokes equations on computers with parallel architecture

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 2(18),  88–98
  18. Supercomputer-based mathematical model for air quality prediction in the urban area

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 3(15),  15–24
  19. Numerical modelling of the thermal bar effect in lake Baikalin a spring-summer warming period

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 1(13),  120–129
  20. Modeling of aerodynamics and pollution dispersion from traffic in urban sub-layer

    Matem. Mod., 22:4 (2010),  3–22
  21. Numerical Solution of Some Inverse Problems with Various Types of Sources of Atmospheric Pollution

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2008, no. 2(3),  47–55
  22. Mathematical model of ignition of condensed systems by a high-temperature supersonic underexpanded jet

    Fizika Goreniya i Vzryva, 38:4 (2002),  35–43
  23. Mathematical Model of Nonisothermal Turbulent Flow of Gas Suspension in a Pipe on the Basis of the Mixed Eulerian–Lagrangian Representation

    TVT, 40:3 (2002),  449–459
  24. Investigation of heat transfer in the case of upward and downward turbulent flow of a mixture of gas and solid particles in a pipe

    TVT, 39:2 (2001),  304–310
  25. Numerical simulation of the formation of nitric oxides in the combustion of coal-dust fuel

    Fizika Goreniya i Vzryva, 34:6 (1998),  3–13
  26. Numerical analysis of the aerodynamics and combustion of a turbulent pulverized-coal burner jet

    Fizika Goreniya i Vzryva, 33:1 (1997),  51–59
  27. Numerical simulation of the combustion of pulverized coal in boiler combustors

    Fizika Goreniya i Vzryva, 31:2 (1995),  23–31

  28. In memory of Prof. G. G. Pestov: life and scientific-educational activity

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 5(37),  103–114
  29. V. N. Bertsun. To the 70$^{\mathrm{th}}$ anniversary

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 1(21),  112–115


© Steklov Math. Inst. of RAS, 2024