RUS  ENG
Full version
PEOPLE

Kovyrkina Olyana Aleksandrovna

Publications in Math-Net.Ru

  1. On accuracy of finite-difference schemes in calculations of centered rarefaction waves

    Matem. Mod., 35:7 (2023),  83–96
  2. Erratum to: Several Articles in Doklady Mathematics

    Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022),  404–405
  3. On convergence of finite-difference shock-capturing schemes in regions of shock waves influence

    Dokl. RAN. Math. Inf. Proc. Upr., 504 (2022),  42–46
  4. Comparative analysis of the accuracy of three different schemes in the calculation of shock waves

    Matem. Mod., 34:10 (2022),  43–64
  5. Combined numerical schemes

    Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022),  1763–1803
  6. On accuracy of MUSCL type scheme when calculating discontinuous solutions

    Matem. Mod., 33:1 (2021),  105–121
  7. Accuracy of MUSCL-type schemes in shock wave calculations

    Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020),  43–48
  8. On the monotonicity of the CABARET scheme approximating a scalar conservation law with alternating characteristic field

    Matem. Mod., 30:5 (2018),  76–98
  9. Monotonicity of the CABARET scheme approximating a hyperbolic system of conservation laws

    Zh. Vychisl. Mat. Mat. Fiz., 58:9 (2018),  1488–1504
  10. Monotonicity of the CABARET scheme approximating a hyperbolic equation with a sign-changing characteristic field

    Zh. Vychisl. Mat. Mat. Fiz., 56:5 (2016),  796–815
  11. Comparison of theory and experiment in simulation of dam break in a rectangular channel with a sudden change in cross-sectional area

    Prikl. Mekh. Tekh. Fiz., 55:6 (2014),  107–113
  12. On the practical accuracy of shock-capturing schemes

    Matem. Mod., 25:9 (2013),  63–74
  13. On monotony of two layer in time cabaret scheme

    Matem. Mod., 24:9 (2012),  97–112
  14. Asymptotic expansion of a difference solution in the neighborhood of strong discontinuity

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:4 (2007),  49–73
  15. Construction of asymptotics of a discrete solution based on nonclassical differential approximations

    Zh. Vychisl. Mat. Mat. Fiz., 45:1 (2005),  88–109


© Steklov Math. Inst. of RAS, 2024