RUS  ENG
Full version
PEOPLE

Gotsev Dmitry Viktorovich

Publications in Math-Net.Ru

  1. Mathematical model of the stress-strain state of an elastic cylindrical body with a porous filler

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 47,  43–50
  2. The stability of monolithic lining of the vertical mine workings with the initial porosity of the material and non-elastic compression work skeleton

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016),  457–474
  3. Distribution of stress and displacement fields in a porous spherical body with allowance for elastic and plastic properties

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 2(40),  45–52
  4. Mathematical model of intense deformed state of two-layered elastic spherical body within the porosity structure of the material

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016),  41–48
  5. Stability of the cylindrical cover with the elastic-viscous-plastic filler at axial compression

    Izv. Saratov Univ. Math. Mech. Inform., 11:3(2) (2011),  86–91
  6. Stress of heavy-wall tubing cylindrical pipes taking into account the gravity for materials with difficult rheology

    Izv. Saratov Univ. Math. Mech. Inform., 11:3(1) (2011),  110–115
  7. Stability of vertical mountain developments in elastic-viscous-plastic files with porous structure

    Izv. Saratov Univ. Math. Mech. Inform., 10:2 (2010),  59–65
  8. Local instability of horizontal tunnels of polygonal shape in viscoelastoplastic masses

    Prikl. Mekh. Tekh. Fiz., 46:2 (2005),  141–150
  9. Local instability of plates with pressed–in annular inclusions at the elastoplastic behavior of materials

    Prikl. Mekh. Tekh. Fiz., 42:3 (2001),  146–151


© Steklov Math. Inst. of RAS, 2024