Solvability and homogenization of initial-boundary value problems
Main publications:
1.Gritsenko, S. A., Homogenization in problems of nonlinear diffusion// Siberian electronic mathematical reports. - 2010. - T. 7. - S. 52--64. -
http: //semr.math.nsc.ru/v7/p52-64.pdf
2. Gerus, A. A., Gritsenko, S. A., Homogenization of a mathematical model of acoustics, Izv. Sarat. Univ. New. ser. Ser. Math. Mechanics. Informatics. 2015. T. 15, vol. 3. P. 264-272. DOI: 10.18500/1816-9791-2015-15-3-264-272
3. The homogenized models of the isothermal acoustics in the configuration «fluid–poroelastic medium»
AM Meirmanov, SA Gritsenko, AA Gerus Siberian electronic mathematical reports, 2016, 13, 49–74
4. A. A. Gerus, S. A. Gritsenko, A. M. Meirmanov Derivation of an Averaged Model of Isothermal Acoustics in a Heterogeneous Medium in the Case of Two Different Poroelastic Domains
(Journal of Applied and Industrial Mathematics).
ISSN 1990-4789, Journal of Applied and Industrial Mathematics, 2016, Vol. 10, No. 2, pp. 1{10. °c Pleiades Publishing, Ltd., 2016.
Original Russian Text °c A.A. Gerus, S.A. Gritsenko, A.M. Meirmanov, 2016, published in Sibir-skii Zhurnal Industrial'noi Matematiki, 2016, Vol. XIX, No. 2, pp. 37-46
5. HOMOGENISATION OF THE ISOTHERMAL ACOUSTICS MODELS IN THE CONFIGURA-TION ELASTIC BODY – POROUS-ELASTIC MEDIUM
A.M. Meirmanov, A.A. Gerus, S.A. Gritsenko, Mathematical Models and Computer Simulations, 2016, Vol. 28, No. 12, pp. 3-19