RUS  ENG
Full version
PEOPLE

Ragozina Viktiriya Evgen'evna

Publications in Math-Net.Ru

  1. Approximate near-front ray solutions in the axisymmetric strain dynamics of a linear elastic half-space

    Sib. Zh. Ind. Mat., 27:3 (2024),  126–142
  2. Interaction of plane strain waves in a heteromodular elastic half-space at the stage of forced stopping of its boundary after uniaxial tension-compression

    Sib. Zh. Ind. Mat., 26:4 (2023),  32–48
  3. Evolution of the wave pattern for piecewise linear uniaxial tension and compression of a heteromodulus elastic bar

    Sib. Zh. Ind. Mat., 25:4 (2022),  54–70
  4. Some approximate solutions of the dynamic problem of axisymmetric shock deformation of a previously unstressed incompressible elastic medium

    Sib. Zh. Ind. Mat., 23:4 (2020),  126–143
  5. Consideration of the influence of residual strain fields in modern physicomechanical technologies of treating structural materials

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:1 (2019),  27–30
  6. Some properties of elastic dynamics of a medium with preliminary large irreversible deformations

    Sib. Zh. Ind. Mat., 22:1 (2019),  90–103
  7. Propagation of converging spherical deformation waves in a heteromodular elastic medium

    Prikl. Mekh. Tekh. Fiz., 57:4 (2016),  149–157
  8. The evolution equations of intensive deformation problems of elastic inhomogeneous medium

    Dal'nevost. Mat. Zh., 15:1 (2015),  76–90
  9. Ray approximations for the shock waves of an elastic deformation of axisymmetric type in a cylindrical layer

    Sib. Zh. Ind. Mat., 18:2 (2015),  111–123
  10. On the impact deformation of an incompressible half-space under the action of a shear load of variable direction

    Sib. Zh. Ind. Mat., 17:2 (2014),  87–96
  11. The evolution equation of transverse shock waves in solids

    Dal'nevost. Mat. Zh., 13:1 (2013),  116–126
  12. Effect of the medium inhomogeneity on the evolution equation of plane shock waves

    Prikl. Mekh. Tekh. Fiz., 54:5 (2013),  142–153
  13. A mathematical model of the motion of shear shock waves of nonzero curvature based on their evolution equation

    Sib. Zh. Ind. Mat., 15:1 (2012),  77–85
  14. The evolutionary equation for one-dimensional shear waves of a rupture of strains

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2011, no. 2(83),  91–104
  15. Эволюционное уравнение антиплоских деформаций в изучении закономерностей образования и движения ударных волн

    Matem. Mod. Kraev. Zadachi, 1 (2010),  158–161
  16. The evolutionary equation for wave processes of the shift deformation

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(2) (2009),  14–24
  17. On axisymmetric motion of an incompressible elastic medium under impact loading

    Prikl. Mekh. Tekh. Fiz., 47:6 (2006),  144–151
  18. About regularity of propagation of boundary perturbation fronts withing thin layers

    Dal'nevost. Mat. Zh., 6:1-2 (2005),  106–111
  19. Geometrical and kinematics restriction on functions discontinuities on moving surfaces

    Dal'nevost. Mat. Zh., 5:1 (2004),  100–109
  20. Method of perturbations in boundary value problems of impact deformation of incompressible elastic mediums

    Dal'nevost. Mat. Zh., 4:1 (2003),  71–77


© Steklov Math. Inst. of RAS, 2025