RUS  ENG
Full version
PEOPLE

Medvedev A B

Publications in Math-Net.Ru

  1. Wide range multiphase equation of state for bismuth

    Fizika Goreniya i Vzryva, 60:2 (2024),  113–126
  2. Diffusion and thermal diffusion coefficients of a binary mixture in the van der Waals model

    Fizika Goreniya i Vzryva, 60:1 (2024),  135–154
  3. Применение модифицированной модели Ван-дер-Ваальса для расчета фазовых диаграмм бинарных смесей гелия, неона, водорода и дейтерия

    TVT, Forthcoming paper
  4. О плавлении железа после ударного сжатия

    TVT, Forthcoming paper
  5. Определение плотности ядра Земли на основе уравнений состояния железа и титана при высоких давлениях и температураx

    TVT, 61:6 (2023),  853–858
  6. On evaporation of iron after impact compression

    Fizika Goreniya i Vzryva, 58:6 (2022),  100–109
  7. Determination of the phase diagram of a mixture of $\mathrm{H}_2+\mathrm{O}_2$ based on a modified van der Waals model

    Fizika Goreniya i Vzryva, 58:1 (2022),  3–12
  8. Possible negative value of the Grüneisen coefficient of hydrogen in the pressure range from 40 to 75 GPa and temperature range from 3500 to 7500 K

    Fizika Goreniya i Vzryva, 54:2 (2018),  98–113
  9. Estimating the self-diffusion coefficients and mutual diffusion of binary mixtures on the basis of modified van der Waals model

    Fizika Goreniya i Vzryva, 53:4 (2017),  58–71
  10. Equation of state of silicon dioxide with allowance for evaporation, dissociation, and ionization

    Fizika Goreniya i Vzryva, 52:4 (2016),  101–114
  11. Wide-range multiphase equation of state for iron

    Fizika Goreniya i Vzryva, 50:5 (2014),  91–108
  12. On the presence of states with a negative Grüneisen parameter in overdriven explosion products

    Fizika Goreniya i Vzryva, 50:4 (2014),  102–109
  13. Shock-wave front thickness in a liquid estimated on the basis of the Navier–Stokes equations using a modified van der Waals model

    Fizika Goreniya i Vzryva, 48:4 (2012),  114–122
  14. Shock compression of porous metals and silicates

    UFN, 182:8 (2012),  829–846
  15. Equation of state and transport coefficients of argon, based on a modified Van der Waals model up to pressures of 100 GPa

    Fizika Goreniya i Vzryva, 46:4 (2010),  116–126
  16. Dynamic compression of hydrogen isotopes at megabar pressures

    UFN, 180:6 (2010),  605–622
  17. Shock compression of liquid nitrogen at a pressure of 320 GPa

    Pis'ma v Zh. Èksper. Teoret. Fiz., 88:3 (2008),  220–223
  18. Equation of state of explosion products on the basis of a modified van der Waals model

    Fizika Goreniya i Vzryva, 42:1 (2006),  87–99
  19. Model estimation of the viscosity of explosion products of condensed explosives

    Fizika Goreniya i Vzryva, 40:2 (2004),  84–93
  20. Shock compression and isentropic expansion of porous samples of tungsten, nickel, and tin

    TVT, 38:3 (2000),  437–444
  21. Compression of titanium in shock waves

    TVT, 37:6 (1999),  881–886
  22. Shock compressibility of iron, aluminum and tantalum under terapascal pressures in laboratory conditions

    TVT, 33:2 (1995),  329–331
  23. Transport coefficients in the modified van der Waals model

    TVT, 33:2 (1995),  227–235


© Steklov Math. Inst. of RAS, 2024