RUS  ENG
Full version
PEOPLE

Eremin Alexander Viktorovich

Publications in Math-Net.Ru

  1. Analysis of the soot particles structure in a flame by Raman spectroscopy

    Zhurnal Tekhnicheskoi Fiziki, 94:5 (2024),  747–756
  2. Совместное воздействие ударно-волнового нагрева и лазерного фотолиза для генерации активных атомов и радикалов в широком диапазоне температур

    TVT, 62:5 (2024),  796–800
  3. Спектральная зависимость оптической плотности среды в УФ и видимой областях при образовании сажи и полиароматических углеводородов при пиролизе углеводородов

    TVT, 62:4 (2024),  563–578
  4. О режимах распространения волны саморазложения ацетилена в ударно-нагретых потоках в трубах малых диаметров

    TVT, 62:2 (2024),  287–296
  5. Ignition of multicomponent combustible mixtures behind shock waves in the presence of trifluoroiodomethane

    Fizika Goreniya i Vzryva, 59:3 (2023),  74–83
  6. Experimental investigation of the formation of polyaromatic hydrocarbons and soot during pyrolysis of ethylene with additives of dimethyl, diethyl ether, and dimethoxymethane

    Fizika Goreniya i Vzryva, 59:2 (2023),  69–82
  7. Soot formation in ethylene pyrolysis with furan and tetrahydrofuran additives

    Fizika Goreniya i Vzryva, 58:4 (2022),  41–51
  8. On the effect of a small acetone impurity on the thermal self-decomposition of acetylene

    TVT, 60:6 (2022),  897–905
  9. Effect of the size and structure of soot particles synthesized during pyrolysis and combustion of hydrocarbons on their optical properties

    TVT, 60:3 (2022),  374–384
  10. Различные механизмы инициирования детонации – «вечнозеленая тема» академика Фортова

    TVT, 59:6 (2021),  903–924
  11. Detonation wave of condensation

    UFN, 191:11 (2021),  1131–1152
  12. On the effect of combustion inhibitors on the level of non-equilibrium radiation during ignition of hydrogen oxygen mixtures behind a shock wave

    Fizika Goreniya i Vzryva, 55:1 (2019),  136–139
  13. Study of evaporation of laser-heated iron–carbon nanoparticles using analysis of thermal radiation

    Zhurnal Tekhnicheskoi Fiziki, 89:8 (2019),  1200–1207
  14. Experimental study of chlorine atom interaction with acetylene behind shock waves

    TVT, 55:5 (2017),  806–812
  15. Study of thermodynamic properties of carbon nanoparticles by the laser heating method

    TVT, 55:5 (2017),  737–745
  16. Study of trifluoromethane within wide pressure and temperature ranges by molecular resonance absorption spectroscopy

    TVT, 55:2 (2017),  247–254
  17. Promoting effect of halogenand phosphorus-containing flame retardants on the autoignition of a methane-oxygen mixture

    Fizika Goreniya i Vzryva, 52:4 (2016),  3–14
  18. Anomalous behavior of optical density of iron nanoparticles heated behind shock waves

    TVT, 54:6 (2016),  960–962
  19. Energy gain of the detonation pyrolysis of acetylene

    TVT, 53:3 (2015),  383–389
  20. A new model for carbon nanoparticle formation in the pyrolysis process behind shock waves

    TVT, 51:5 (2013),  747–754
  21. The effect of chlorine atoms on the charging kinetics of carbon nanoparticles forming in shock-heated plasma

    TVT, 50:6 (2012),  739–745
  22. Quantum effects in the kinetics of the initiation of detonation condensation waves

    Pis'ma v Zh. Èksper. Teoret. Fiz., 94:7 (2011),  570–575
  23. Size Measurement of Carbon and Iron Nanoparticles by Laser Induced Incadescence

    TVT, 49:5 (2011),  687–694
  24. Investigation of the Kinetics of Carbon Nanoparticle Charging in Shock-Heated Plasma ъ

    TVT, 49:3 (2011),  357–364
  25. Formation of detonation wave upon condensation of supersaturated carbon vapor

    TVT, 48:6 (2010),  862–868
  26. Formation of a detonation-like condensation wave

    Pis'ma v Zh. Èksper. Teoret. Fiz., 87:9 (2008),  556–559
  27. Ignition of Multicomponent Hydrocarbon/Air Mixtures behind Shock Waves

    TVT, 40:3 (2002),  416–423
  28. Dissociation of $\mathrm{CO}_2$ molecules in a wide temperature range

    TVT, 38:1 (2000),  37–40
  29. Recombination radiation from a nonequilibrium jet of dissociated carbon dioxide

    Prikl. Mekh. Tekh. Fiz., 34:6 (1993),  10–20
  30. Generalized empirical laws of starting discontinuity dynamics associated with the startup of underexpanded jets

    Prikl. Mekh. Tekh. Fiz., 32:5 (1991),  22–26
  31. Density distribution in pulsed gas jets effusing into a rarefied space

    Prikl. Mekh. Tekh. Fiz., 31:6 (1990),  123–127
  32. An experimental study into the nonsteady radiation of a jet consisting of an impact-heating gas containing CO$_2$

    Prikl. Mekh. Tekh. Fiz., 31:4 (1990),  31–38
  33. Nonstationary processes in starting strongly underexpanded jets

    Prikl. Mekh. Tekh. Fiz., 19:1 (1978),  34–40
  34. Экспериментальное определение полного рабочего времени в ударной трубе (№ 2481 Деп. от 1 VII 1976)

    TVT, 14:4 (1976),  915–916
  35. Formation of a jet of gas outflowing into evacuated space

    Prikl. Mekh. Tekh. Fiz., 16:2 (1975),  53–58

  36. Formation of a detonation wave in the thermal decomposition of acetylene

    Pis'ma v Zh. Èksper. Teoret. Fiz., 92:2 (2010),  101–105


© Steklov Math. Inst. of RAS, 2025