RUS  ENG
Full version
PEOPLE

Zuev Vitalii Sergeevich

Publications in Math-Net.Ru

  1. Cherenkov excitation of surface waves

    Pis'ma v Zh. Èksper. Teoret. Fiz., 91:3 (2010),  126–129
  2. Nanostructures in laser experiments

    Kvantovaya Elektronika, 31:2 (2001),  120–126
  3. Scientific foundations of powerful photodissociation lasers (history of research in the 1960s at the Division of Quantum Radiophysics of the P N Lebedev Physics Institute)

    Kvantovaya Elektronika, 24:12 (1997),  1105–1113
  4. Concentration of an optical field in an optical coaxial line

    Kvantovaya Elektronika, 24:5 (1997),  462–466
  5. Principal waves in multiply connected waveguides: concentration of laser radiation on areas of subwavelength dimensions

    Kvantovaya Elektronika, 23:3 (1996),  257–260
  6. XeF laser with optical pumping by surface discharges

    Kvantovaya Elektronika, 19:11 (1992),  1047–1054
  7. Iodine laser pumped by light from a shock front created by detonating an explosive

    Kvantovaya Elektronika, 19:2 (1992),  135–138
  8. Lasing due to the D'–A' transition in the Br2 molecule optically pumped by a segmented surface discharge

    Kvantovaya Elektronika, 18:2 (1991),  181–183
  9. Photodissociation XeF laser emitting visible and ultraviolet radiation when pumped with radiation from a sectioned surface discharge

    Kvantovaya Elektronika, 16:6 (1989),  1154–1157
  10. Interferometric measurements of the atmospheric absorption of iodine laser radiation

    Kvantovaya Elektronika, 15:10 (1988),  1959–1966
  11. Xenon and hydrogen gas mixtures as laser active media

    Kvantovaya Elektronika, 15:8 (1988),  1670–1675
  12. Determination of the absolute quantum efficiency of the luminescence of Xe2Cl* in Cl2–Xe mixtures

    Kvantovaya Elektronika, 14:7 (1987),  1397–1398
  13. Optical pumping of xenon gas lasers

    Kvantovaya Elektronika, 14:7 (1987),  1393–1396
  14. Evolution of active-medium perturbations and the focusing of radiation from photodissociation lasers utilizing "slow" pumping

    Kvantovaya Elektronika, 14:3 (1987),  452–459
  15. Efficiency of rare-gas-alkali ionic molecules in stimulated emission of ultraviolet and far ultraviolet radiation

    Kvantovaya Elektronika, 14:1 (1987),  185–187
  16. Photodissociation molecular laser of the blue-green range with $\sim 3$ Joule energy

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 12:23 (1986),  1423–1429
  17. Characteristics of an XeF (C–A) laser emitting visible light as a result of optical pumping by surface-discharge radiation

    Kvantovaya Elektronika, 13:12 (1986),  2521–2523
  18. Mercury halide vapor molecular laser pumped by a wide-band optical radiation and emitting three-color visible radiation

    Kvantovaya Elektronika, 13:7 (1986),  1515–1517
  19. Green-emitting mercury chloride laser pumped by wide-band optical radiation

    Kvantovaya Elektronika, 13:6 (1986),  1275–1278
  20. Blue-violet Hgl/Hgl2 laser with wide-band optical pumping by a linearly stabilized surface discharge

    Kvantovaya Elektronika, 13:5 (1986),  1017–1019
  21. Feasibility of stimulated emission of radiation from ionic heteronuclear molecules. II. Kinetics

    Kvantovaya Elektronika, 12:11 (1985),  2213–2225
  22. Feasibility of stimulated emission of radiation from ionic heteronuclear molecules. I. Spectroscopy

    Kvantovaya Elektronika, 12:11 (1985),  2204–2212
  23. Lasing in optically excited KrCl

    Kvantovaya Elektronika, 12:11 (1985),  2197–2198
  24. Stimulated emission from an optically pumped Xe2Cl laser

    Kvantovaya Elektronika, 12:9 (1985),  1954–1955
  25. Optical inhomogeneities in a photodissociation nanosecond-pulse iodine amplifier utilizing slow pumping by ultraviolet radiation

    Kvantovaya Elektronika, 11:10 (1984),  1940–1946
  26. Efficiency of an optically pumped XeF laser

    Kvantovaya Elektronika, 11:9 (1984),  1750–1756
  27. Transient regime of stimulated enthalpy scattering of light by ultrasound in iodine lasers

    Kvantovaya Elektronika, 11:9 (1984),  1737–1749
  28. Effects of the laser field on an inhomogeneity wave in the active medium of an iodine photodissociation laser

    Kvantovaya Elektronika, 11:7 (1984),  1465–1467
  29. Kinetics of low-threshold stimulated thermal scattering of light in gases near the critical point

    Kvantovaya Elektronika, 11:7 (1984),  1462–1464
  30. Photodissociation XeF laser operating with an efficiency of about 1 %

    Kvantovaya Elektronika, 11:6 (1984),  1080–1081
  31. Imitrines. V. Dependences of the fluorescence quantum efficiencies and of the lasing efficiencies on the chemical structure of imitrines

    Kvantovaya Elektronika, 11:2 (1984),  393–397
  32. Measurements of the absolute luminescence quantum efficiency of mixtures of Cl$_2$ with Ar, Kr, and Xe excited by vacuum ultraviolet radiation

    Kvantovaya Elektronika, 11:2 (1984),  354–365
  33. Some features of the use of a mixture of H2–He gases as the active medium of an optically pumped laser

    Kvantovaya Elektronika, 11:1 (1984),  197–199
  34. Optical inhomogeneities in a bleaching wave in the active medium of a photochemical Kr2F laser

    Kvantovaya Elektronika, 10:9 (1983),  1868–1871
  35. Permissible heating of a medium and specific ultraviolet output energy of an optically pumped J2 laser

    Kvantovaya Elektronika, 10:5 (1983),  904–905
  36. Stimulated scattering of light in gases near the critical point

    Kvantovaya Elektronika, 10:1 (1983),  132–133
  37. Blue-green laser emission from IF subjected to wide-band optical pumping

    Kvantovaya Elektronika, 9:5 (1982),  1064–1065
  38. Investigation of an I2(D'A') laser pumped by wide-band radiation

    Kvantovaya Elektronika, 9:3 (1982),  573–582
  39. Regeneration of the active mixture of an iodine laser pumped by radiation from an open discharge

    Kvantovaya Elektronika, 9:2 (1982),  368–370
  40. Possible control of the gain of stimulated enthalpy scattering of light

    Kvantovaya Elektronika, 8:12 (1981),  2699–2703
  41. Investigation of luminescence in the 420 nm range as a result of photolysis of KrF2 in mixtures with Ar, Kr, and N2

    Kvantovaya Elektronika, 8:10 (1981),  2183–2190
  42. Intensity of ultrasound excited in stimulated light scattering by optically-controlled chemical reactions

    Kvantovaya Elektronika, 8:9 (1981),  1978–1984
  43. Stimulated light scattering by thermal waves excited in thermodynamically nonequilibrium media as a result of the enthalpy of optically controlled chemical reactions

    Kvantovaya Elektronika, 8:9 (1981),  1968–1977
  44. Imitrines. III. Laser action in the 500 nm band in solutions and vapors of organic dyes in the imitrine class

    Kvantovaya Elektronika, 8:7 (1981),  1567–1570
  45. Coumarins in the gaseous phase. I. Stimulated emission of coumarin vapors in the range 485–520 nm

    Kvantovaya Elektronika, 8:6 (1981),  1306–1307
  46. Lasing as a result of a B–X transition in the excimer XeF formed as a result of photodissociation of KrF2 in mixtures with Xe

    Kvantovaya Elektronika, 8:2 (1981),  373–375
  47. Stimulated emission from the triatomic excimer $Kr_2F$ subjected to optical pumping

    Kvantovaya Elektronika, 7:12 (1980),  2660–2661
  48. Stimulated light scattering in a thermodynamically nonequilibrium medium with excitation of collective motion due to optically initiated chemical reactions

    Kvantovaya Elektronika, 7:12 (1980),  2614–2620
  49. Experimental investigation of internal losses in iodine lasers pumped by ultraviolet radiation from an open high-current discharge

    Kvantovaya Elektronika, 7:12 (1980),  2604–2613
  50. Mechanism of emission of blue luminescence from $ArKrF^*$ and $KrN_2F^*$ excimers

    Kvantovaya Elektronika, 7:7 (1980),  1562–1563
  51. Ultimate characteristics of an $XeO$ photochemical laser

    Kvantovaya Elektronika, 7:7 (1980),  1482–1491
  52. Proposal for lasers utilizing dye solution aerosols

    Kvantovaya Elektronika, 7:1 (1980),  189–192
  53. Pulse-periodic operation of an iodine ultraviolet laser pumped by radiation from quartz flashlamps

    Kvantovaya Elektronika, 6:9 (1979),  2033–2034
  54. Energy characteristics of an XeO photochemical laser

    Kvantovaya Elektronika, 6:7 (1979),  1513–1522
  55. Laser action due to the bound-free C(3/2) – A(3/2) transition in the XeF molecule formed by photodissociation of XeF2

    Kvantovaya Elektronika, 6:5 (1979),  1074
  56. Wavefront instability of iodine laser radiation and dynamics of optical inhomogeneity evolution in the active medium

    Kvantovaya Elektronika, 6:4 (1979),  875–878
  57. Investigation of the physical parameters of an iodine amplifier pumped by open high-current discharge radiation

    Kvantovaya Elektronika, 6:2 (1979),  311–316
  58. Study of a photochemical laser utilizing the XeO molecule

    Kvantovaya Elektronika, 5:7 (1978),  1456–1464
  59. Stimulated emission at λ = 502 nm as a result of prolonged optical pumping of HgBr2 vapor

    Kvantovaya Elektronika, 5:3 (1978),  684–686
  60. Stimulated emission due to the B(1/2)–X2Σ+ transition in the XeF molecule formed by photodissociation of XeF2

    Kvantovaya Elektronika, 4:11 (1977),  2453
  61. Laser utilizing an electronic transition in CN radicals pumped optically by radiation from an open high-current discharge

    Kvantovaya Elektronika, 4:9 (1977),  2057–2058
  62. Optically pumped ultraviolet molecular iodine laser

    Kvantovaya Elektronika, 4:3 (1977),  638
  63. Mechanism of induced losses in a POPOP vapor laser

    Kvantovaya Elektronika, 4:2 (1977),  443–446
  64. Investigation of the change in the refractive index of the active medium of a laser by the optical delay method utilizing emitted radiation

    Kvantovaya Elektronika, 3:11 (1976),  2434–2445
  65. Laser emission from the XeO molecule under optical pumping conditions

    Kvantovaya Elektronika, 3:4 (1976),  930–932
  66. Experimental investigation of the possibility of using a highcurrent discharge for the optical pumping of an Xe2 laser

    Kvantovaya Elektronika, 3:1 (1976),  224–225
  67. Characteristics of iodine laser short-pulse amplifier

    Kvantovaya Elektronika, 2:6 (1975),  1282–1295
  68. Photochemical laser utilizing the 1Σ+g3Σg vibronic transition in S2

    Kvantovaya Elektronika, 2:4 (1975),  799–806
  69. Amplifier with a stored energy over 700 J designed for a short-pulse iodine laser

    Kvantovaya Elektronika, 2:1 (1975),  197–198
  70. Analysis of the possibility of interferometric laser control of the surface of an optical telescope mirror. Part II

    Kvantovaya Elektronika, 2:1 (1975),  92–98
  71. Analysis of the possibility of interferometric laser control of the surface of an optical telescope mirror. Part I

    Kvantovaya Elektronika, 2:1 (1975),  78–91
  72. Electrical, brightness, and gasdynamic characteristics of high-current discharges in nitrogen and argon at pressures of 1–11 atm

    Kvantovaya Elektronika, 1:10 (1974),  2275–2278
  73. Laser action in 1,4–di [2–(5–phenyloxazolyl)] benzene vapor

    Kvantovaya Elektronika, 1:9 (1974),  2099–2101
  74. A contribution to the problem of an optically pumped ultraviolet Xe2 laser: photoluminescence spectrum and quantum efficiency of gaseous xenon

    Kvantovaya Elektronika, 1:9 (1974),  2048–2052
  75. Measurement of the 150-nm brightness temperature of a high-current discharge in nitrogen

    Kvantovaya Elektronika, 1:6 (1974),  1442–1445
  76. Pulsed D2 + F2 + CO2 + He chemical laser

    Kvantovaya Elektronika, 1:3 (1974),  560–564
  77. Investigation of processes associated with photolysis of SPF3

    Kvantovaya Elektronika, 1:2 (1974),  394–400
  78. Iodine laser emitting short pulses of 50 J energy and 5 nsec duration

    Kvantovaya Elektronika, 1973, no. 6(18),  116
  79. Investigation of optical inhomogeneities which appear in an active medium of a photodissociation laser during coherent emission

    Kvantovaya Elektronika, 1973, no. 6(18),  23–30
  80. Large multielement optical telescope with controllable mirror shape

    UFN, 111:3 (1973),  558–560
  81. Propagation of a light pulse in a moving two-level absorbing medium

    Kvantovaya Elektronika, 1972, no. 2(8),  88–89
  82. The propagation velocity of a powerful light pulse in inversely populated medium

    Dokl. Akad. Nauk SSSR, 165:1 (1965),  58–60
  83. Optical location of the Moon

    Dokl. Akad. Nauk SSSR, 154:6 (1964),  1303–1305

  84. In Memory of Gennadii Alekseevich Kirillov (25 July 1933 – 22 September 2013)

    Kvantovaya Elektronika, 43:10 (2013),  988
  85. Anatolii Nikolaevich Oraevsky

    Kvantovaya Elektronika, 33:9 (2003),  845–846
  86. In Memory of Nikolai Gennadievich Basov

    Kvantovaya Elektronika, 31:8 (2001),  751
  87. Viktor Konstantinovich Orlov

    Kvantovaya Elektronika, 15:5 (1988),  1087–1088
  88. Nikolaĭ Gennadievich Basov (on his sixtieth birthday)

    Kvantovaya Elektronika, 9:12 (1982),  2547–2549
  89. Eduard Sergeevich Voronin

    Kvantovaya Elektronika, 8:5 (1981),  1152
  90. Aleksandr Ivanovich Barchukov (on his sixtieth birthday)

    Kvantovaya Elektronika, 7:2 (1980),  445
  91. Fedor Vasil'evich Bunkin (on his 50th birthday)

    Kvantovaya Elektronika, 6:6 (1979),  1352


© Steklov Math. Inst. of RAS, 2025