RUS  ENG
Full version
PEOPLE

Ustinovskii Nikolai Nikolaevich

Publications in Math-Net.Ru

  1. Исследование радиационной стойкости УФ оптических материалов для термоядерной станции с KrF-лазерным драйвером на линейном ускорителе электронов с энергией 10 МэВ. Ч.II. Наведенное электронным пучком поглощение в образцах

    Kvantovaya Elektronika, 54:12 (2024),  734–742
  2. Исследование радиационной стойкости УФ оптических материалов для термоядерной станции с KrF-лазерным драйвером на линейном ускорителе электронов с энергией 10 МэВ. Ч. I. Адаптация ускорителя и дозовые характеристики облучения

    Kvantovaya Elektronika, 54:12 (2024),  727–733
  3. Electron-beam-excited high-pressure He – Ar mixture as a potential active medium for an optically pumped laser

    Kvantovaya Elektronika, 48:12 (2018),  1174–1178
  4. Experimental capabilities of the GARPUN MTW Ti : sapphire – KrF laser facility for investigating the interaction of subpicosecond UV pulses with targets

    Kvantovaya Elektronika, 47:4 (2017),  319–326
  5. Ti:sapphire/KrF hybrid laser system generating trains of subterawatt subpicosecond UV pulses

    Kvantovaya Elektronika, 44:5 (2014),  431–439
  6. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire — KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    Kvantovaya Elektronika, 43:4 (2013),  339–346
  7. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire — KrF laser. Part 1. Regenerative amplification of subpicosecond pulses in a wide-aperture electron beam pumped KrF amplifier

    Kvantovaya Elektronika, 43:4 (2013),  332–338
  8. Control of extended high-voltage electric discharges in atmospheric air by UV KrF-laser radiation

    Kvantovaya Elektronika, 41:3 (2011),  227–233
  9. Transfer of microwave radiation in sliding mode plasma waveguides

    Pis'ma v Zh. Èksper. Teoret. Fiz., 91:5 (2010),  244–248
  10. Amplification of subpico second UV pulses in the multistage GARPUN-MTW Ti:sapphire — KrF laser system

    Kvantovaya Elektronika, 40:5 (2010),  381–385
  11. Amplification and generation of radiation at the 42Γ → 1,22Γ transition of the Kr2F molecule in an electron-beam-pumped wide-aperture laser

    Kvantovaya Elektronika, 40:3 (2010),  203–209
  12. Deactivation of the 6s and 6s' states of a xenon atom in collisions with helium, argon, and xenon atoms

    Kvantovaya Elektronika, 34:3 (2004),  189–198
  13. Deactivation of xenon atoms in the $6s$ resonant state in collisions with xenon and helium atoms

    Kvantovaya Elektronika, 26:2 (1999),  131–133
  14. Influence of the pump power and of the addition of helium on the energy parameters of an electron-beam-pumped Ar — Xe laser

    Kvantovaya Elektronika, 25:6 (1998),  493–500
  15. Deactivation of the xenon atom in the 6$s$ metastable state in collisions with xenon and helium atoms

    Kvantovaya Elektronika, 25:3 (1998),  229–232
  16. Collisional deactivation of the $6s'$ states of the Xe atom in the active medium of a high-pressure Ar – Xe laser

    Kvantovaya Elektronika, 24:11 (1997),  987–990
  17. Dynamics of the gain and generation of an Ar–Xe laser pumped by an electron beam

    Kvantovaya Elektronika, 20:7 (1993),  669–676
  18. Electron-beam-pumped laser utilizing mixtures of Xe, Kr, and Ar with two-component buffer gases

    Kvantovaya Elektronika, 18:11 (1991),  1290–1294
  19. Deexcitation of the 6s states of the Xe atom in high-pressure Ar–Xe mixtures

    Kvantovaya Elektronika, 18:9 (1991),  1047–1051
  20. Electron-beam-pumped He–Xe, He–Kr, and He–Ar lasers

    Kvantovaya Elektronika, 18:8 (1991),  921–925
  21. Influence of the pump power on the spectral and time characteristics of an Ar–Xe laser

    Kvantovaya Elektronika, 18:5 (1991),  538–544
  22. Dynamics of the population of excimer states in the active medium of an Xe I laser

    Kvantovaya Elektronika, 16:6 (1989),  1190–1197
  23. Atmospheric-pressure electron-beam-controlled Ar–Xe laser

    Kvantovaya Elektronika, 16:6 (1989),  1132–1134
  24. Electron-beam-controlled Ar–Xe laser using an electron gun with a heated cathode

    Kvantovaya Elektronika, 15:3 (1988),  453–454
  25. High-power electron-beam-controlled Ar–Xe laser with (2.5–5)×10–5 rad beam divergence

    Kvantovaya Elektronika, 14:9 (1987),  1739–1747
  26. Possibility of construction of a pulse-periodic large-volume electron-beamcontrolled laser utilizing infrared transitions in the Xe atom and characterized by a specific output power of 0.5–1 W/cm3

    Kvantovaya Elektronika, 13:8 (1986),  1543–1544
  27. Influence of Ne on the energy characteristics of high-pressure lasers with electron-beam-pumped mixtures of He with Ar, Kr, and Xe

    Kvantovaya Elektronika, 13:3 (1986),  488–492
  28. High-pressure electron-beam-controlled lasers utilizing infrared transitions in ArI

    Kvantovaya Elektronika, 13:3 (1986),  482–487
  29. Electron-beam-pumped high-pressure laser utilizing electronic transitions in the Kr atom

    Kvantovaya Elektronika, 13:1 (1986),  189–191
  30. Possibility of pulse generation with the width of 100 microseconds during high-pressure laser excitation by electron-beams on the $Ar:Xe$ mixture

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:3 (1985),  173–176
  31. High-pressure power laser utilizing 3p–3s transitions in NeI generating radiation of wavelengths 703 and 725 nm

    Kvantovaya Elektronika, 12:7 (1985),  1521–1524
  32. Electron-beam-controlled atomic Xe infrared laser

    Kvantovaya Elektronika, 11:9 (1984),  1722–1736
  33. Vibrational relaxation and dissociation of strongly excited ozone molecules

    Kvantovaya Elektronika, 9:11 (1982),  2204–2211

  34. Errata to the article: Atmospheric-pressure electron-beam-controlled Ar–Xe laser

    Kvantovaya Elektronika, 16:12 (1989),  2599


© Steklov Math. Inst. of RAS, 2025