RUS  ENG
Full version
PEOPLE

Matasov Aleksandr Ivanovich

Publications in Math-Net.Ru

  1. Guaranteeing estimation method for detecting failures in a redundant sensor unit

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 5,  77–81
  2. The guaranteeing estimation method to calibrate a gyro unit

    Avtomat. i Telemekh., 2023, no. 7,  41–65
  3. Calibration of a 3D sensor under its orientation constraint

    Avtomat. i Telemekh., 2023, no. 6,  144–168
  4. Calibration of an accelerometer unit under restriction on its angular positions in the plane case

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1,  60–64
  5. Application of the guaranteeing approach to the accelerometer unit calibration problem

    Avtomat. i Telemekh., 2020, no. 4,  140–161
  6. Variational problems for calibrating an accelerometer unit

    Avtomat. i Telemekh., 2019, no. 12,  59–79
  7. Formalizing a sequential calibration scheme for a strapdown inertial navigation system

    Avtomat. i Telemekh., 2018, no. 1,  66–83
  8. Guaranteed approach for determining the optimal design of accelerometer unit calibration

    Fundam. Prikl. Mat., 22:2 (2018),  133–145
  9. An iterative algorithm for $l_1$-norm approximation in dynamic estimation problems

    Avtomat. i Telemekh., 2015, no. 5,  7–26
  10. A “telescopic” system in the calibration problem for strapdown inertial navigation systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 2,  40–43
  11. Estimating errors in pins inertial sensor readings with $l_1$-approximation

    Avtomat. i Telemekh., 2011, no. 2,  9–24
  12. Levels of nonoptimality of the Weiszfeld Algorithm in the least-modules method

    Avtomat. i Telemekh., 2010, no. 2,  4–16
  13. The small parameter method for solving the estimation problem in systems with delay

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 2,  68–70
  14. Simplified estimation algorithms for systems with aftereffect that have a small parameter

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2001, no. 2,  37–43
  15. Solving degenerate problems of linear programming

    Avtomat. i Telemekh., 2000, no. 1,  105–117
  16. Kalman Filtering under the Guaranteed Approach to the Problem of Topographic Attachment

    Avtomat. i Telemekh., 1997, no. 10,  34–47
  17. An approximate method for solving the optimal control problem for systems with aftereffect

    Dokl. Akad. Nauk, 354:4 (1997),  465–468
  18. On the Approach to Solving Minimax Filtering Problems in Time – Delay Systems

    Avtomat. i Telemekh., 1996, no. 6,  125–147
  19. Estimation of the accuracy of an approximate method for solving a minimax filtering problem in systems with delay

    Dokl. Akad. Nauk, 339:1 (1994),  37–39
  20. Estimation of the sensitivity of the Kalman–Bucy filter to a priori values of covariance matrices

    Avtomat. i Telemekh., 1991, no. 1,  78–87
  21. Optimality of linear algorithms in the “worst correlation” problem

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 1,  61–63


© Steklov Math. Inst. of RAS, 2025