RUS  ENG
Full version
PEOPLE

Tagiyev Rafig Kalandar

Publications in Math-Net.Ru

  1. Variational method for solving a coefficient inverse problem for a parabolic equation with integral conditions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 224 (2023),  133–141
  2. Variational statement of a coefficient inverse problem for a multidimensional parabolic equation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212 (2022),  92–99
  3. Variational formulation of an inverse problem for a parabolic equation with integral conditions

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:3 (2020),  34–40
  4. Variational method of solving a coefficient inverse problem for an elliptic equation

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:1 (2018),  12–20
  5. On the problem of optimal control in the coefficients of an elliptic equation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017),  278–291
  6. Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 50,  30–44
  7. Coefficient inverse problem of control type for elliptic equations with additional integral condition

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 48,  17–29
  8. On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 45,  49–59
  9. On optimal control problem for the heat equation with integral boundary condition

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016),  54–64
  10. On an optimal control problem for a parabolic equation with an integral condition and controls in coefficients

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 3(41),  31–41
  11. The optimal control problem for the coefficients of a parabolic equation under phase constraints

    Avtomat. i Telemekh., 2015, no. 8,  27–45
  12. Optimal control problem with controls in coefficients of quasilinear elliptic equation

    Eurasian Journal of Mathematical and Computer Applications, 1:2 (2013),  21–38
  13. On optimal control of the hyperbolic equation coefficients

    Avtomat. i Telemekh., 2012, no. 7,  40–54
  14. Optimal control of the coefficients of quasilinear elliptic equation

    Avtomat. i Telemekh., 2010, no. 9,  19–32
  15. Optimal control for the coefficients of a quasilinear parabolic equation

    Avtomat. i Telemekh., 2009, no. 11,  55–69
  16. Estimating the rate of convergence of the straight-line and regularization methods in the problem of optimal control of the coefficients of a hyperbolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 33:2 (1993),  189–194
  17. An estimate for the rate of convergence of difference approximations and regularization of a problem of optimal control for a second-order differential equation

    Differ. Uravn., 25:9 (1989),  1626–1629
  18. Convergence of difference approximations and regularization of the optimal control problem for an ordinary linear differential equation of the second order

    Zh. Vychisl. Mat. Mat. Fiz., 28:5 (1988),  779–780
  19. Problems of optimization with controls in the coefficients of a parabolic equation

    Differ. Uravn., 19:8 (1983),  1324–1334


© Steklov Math. Inst. of RAS, 2024