RUS  ENG
Full version
PEOPLE

Baklanovskaya Varvara Feodos'evna

Publications in Math-Net.Ru

  1. Convergence of the net method for third-order nonlinear partial differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 27:10 (1987),  1536–1554
  2. Investigation of the method of nets for two-dimensional equations of the Navier–Stokes type with non-negative viscosity. II

    Zh. Vychisl. Mat. Mat. Fiz., 24:12 (1984),  1827–1841
  3. Investigation of the method of nets for two-dimensional equations of the Navier-Stokes and Euler type with non-negative viscosity. I

    Zh. Vychisl. Mat. Mat. Fiz., 24:11 (1984),  1657–1674
  4. Numerical modeling of long surface and internal waves in a closed slowly rotating basin

    Zh. Vychisl. Mat. Mat. Fiz., 24:7 (1984),  1066–1078
  5. An investigation of the convergence of a difference method for the Navier-Stokes and Euler equations with periodicity conditions relative to the space variables

    Dokl. Akad. Nauk SSSR, 246:4 (1979),  782–785
  6. On a method of studying the behavior of the difference of two solutions of nonlinear differential equations

    Dokl. Akad. Nauk SSSR, 244:4 (1979),  793–796
  7. Comparison of exact and approximate solutions of a parabolic system of equations with degeneracy

    Zh. Vychisl. Mat. Mat. Fiz., 19:6 (1979),  1471–1484
  8. Boundary value problems for the St. Venant system of equations on a plane

    Zh. Vychisl. Mat. Mat. Fiz., 19:3 (1979),  708–725
  9. A study of the method of nets for parabolic equations with degeneracy

    Zh. Vychisl. Mat. Mat. Fiz., 17:6 (1977),  1458–1473
  10. An investigation of the grid method for parabolic equations with degeneracy

    Dokl. Akad. Nauk SSSR, 227:6 (1976),  1281–1284
  11. A numerical method for solving St. Venant's equations (chamber model)

    Zh. Vychisl. Mat. Mat. Fiz., 16:5 (1976),  1217–1232
  12. Numerical solution of the problem of pressure restoration and relief wave propagation in an elastic-plastic filtration process

    Zh. Vychisl. Mat. Mat. Fiz., 8:3 (1968),  696–701
  13. A two-dimensional problem of nonlinear filtration

    Zh. Vychisl. Mat. Mat. Fiz., 6:supplement to № 4 (1966),  237–241
  14. A study of the method of nets in solving the first boundary-value problem for equations of the type of non-stationary filtration (the two-dimensional case)

    Zh. Vychisl. Mat. Mat. Fiz., 4:supplement to № 4 (1964),  228–243
  15. The numerical solution of the second boundary-value problem for the unidimensional non-stationary filtration equation

    Zh. Vychisl. Mat. Mat. Fiz., 1:6 (1961),  1129–1133
  16. The numerical solution of a one-dimensional problem for equations of non-stationary filtration

    Zh. Vychisl. Mat. Mat. Fiz., 1:3 (1961),  461–469
  17. Finding numerically the quasi-stationary solution of a system of one-dimensional parabolic equations

    Zh. Vychisl. Mat. Mat. Fiz., 1:2 (1961),  354–357
  18. The numerical solution of a non-stationary filtration problem

    Zh. Vychisl. Mat. Mat. Fiz., 1:1 (1961),  105–112


© Steklov Math. Inst. of RAS, 2024