RUS  ENG
Full version
PEOPLE

Poznyak Leonid Timofeevich

Publications in Math-Net.Ru

  1. The Bazley–Fox method with truncations for solving the eigenvalue problem for a pair of symmetric positive bilinear forms

    Zh. Vychisl. Mat. Mat. Fiz., 44:3 (2004),  403–420
  2. A partial truncation procedure in the partial domain method for computing the eigenvalues of the two-dimensional Laplace operator

    Zh. Vychisl. Mat. Mat. Fiz., 31:11 (1991),  1638–1654
  3. A rigorous justification and estimation of the rate of convergence for the partial domain method in two-dimensional eigenvalue problems for the Laplace operator

    Zh. Vychisl. Mat. Mat. Fiz., 30:7 (1990),  1057–1070
  4. An estimate of the rate of convergence of Weinstein's method in the eigenvalue problem for an L-shaped membrane

    Zh. Vychisl. Mat. Mat. Fiz., 28:9 (1988),  1297–1310
  5. A method of estimating lower bounds for eigenvalues of differential operators by the method of fictitious domains

    Zh. Vychisl. Mat. Mat. Fiz., 19:4 (1979),  921–936
  6. A new truncation procedure in the Bazley–Fox method

    Zh. Vychisl. Mat. Mat. Fiz., 17:1 (1977),  24–41
  7. Application of the Bazley–Fox method to two-dimensional second order elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 16:1 (1976),  83–101
  8. Computation of lower bounds for the eigenvalues of certain ordinary differential equations by the Bazley–Fox method

    Zh. Vychisl. Mat. Mat. Fiz., 14:4 (1974),  873–890
  9. The convergence of the Bazley–Fox method in the problem of the eigenvalues of one bilinear form with respect to another

    Zh. Vychisl. Mat. Mat. Fiz., 13:4 (1973),  839–853
  10. The rate of convergence of the Bazley-Fox method of intermediate problems in a generalized eigenvalue problem of form $Au=\lambda Cu$

    Zh. Vychisl. Mat. Mat. Fiz., 10:2 (1970),  326–339
  11. The convergence of the Bazley–Fox process, and an estimate of the rate of this convergence

    Zh. Vychisl. Mat. Mat. Fiz., 9:4 (1969),  860–872
  12. Estimate of the rate of convergence of a certain version of the method of intermediate problems

    Zh. Vychisl. Mat. Mat. Fiz., 8:5 (1968),  1117–1126


© Steklov Math. Inst. of RAS, 2024