RUS  ENG
Full version
PEOPLE

Vasil'ev N S

Publications in Math-Net.Ru

  1. Equilibrium principle application to routing control in packet data transmission networks

    Inform. Primen., 8:1 (2014),  28–35
  2. The consistency of the Pareto and Nash optimality principles as applied to the problem of routing in a ring network

    Zh. Vychisl. Mat. Mat. Fiz., 38:4 (1998),  590–595
  3. Properties of the solutions to the problem of dynamic routing in Networks

    Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998),  42–52
  4. Properties of the solutions to the task of routing in the network with virtual circuits

    Zh. Vychisl. Mat. Mat. Fiz., 37:7 (1997),  785–793
  5. The search for a fixed point of a consistently monotone mapping

    Zh. Vychisl. Mat. Mat. Fiz., 36:12 (1996),  39–47
  6. A parallel algorithm and computer architecture for calculating an inertia matrix

    Zh. Vychisl. Mat. Mat. Fiz., 36:6 (1996),  152–158
  7. The non-complementarity of equilibrium routings of ring networks

    Zh. Vychisl. Mat. Mat. Fiz., 35:5 (1995),  794–801
  8. Equilibrium routing of ring networks

    Zh. Vychisl. Mat. Mat. Fiz., 35:3 (1995),  452–459
  9. A fast parallel algorithm for computing an inertia matrix

    Zh. Vychisl. Mat. Mat. Fiz., 35:1 (1995),  135–139
  10. The problems of controlling the routing of connections in data transmission networks

    Zh. Vychisl. Mat. Mat. Fiz., 31:4 (1991),  605–617
  11. A new approach to the numerical solution of non-linear equations

    Zh. Vychisl. Mat. Mat. Fiz., 30:11 (1990),  1638–1645
  12. Numerical solution of extremal problems on constructing ellipsoids and parallelepipeds

    Zh. Vychisl. Mat. Mat. Fiz., 27:3 (1987),  340–348
  13. Properties of a flow polyhedron and their applications to numerical solution of extremal problems on graphs

    Zh. Vychisl. Mat. Mat. Fiz., 25:5 (1985),  780–783
  14. Minimum search in concave problems, using the sufficient condition for a global extremum

    Zh. Vychisl. Mat. Mat. Fiz., 25:2 (1985),  190–199
  15. An active method of searching for the global minimum of a concave function

    Zh. Vychisl. Mat. Mat. Fiz., 24:1 (1984),  152–156
  16. Methods of finding the global minimum of a quasi-concave function

    Zh. Vychisl. Mat. Mat. Fiz., 23:2 (1983),  307–313
  17. Numerical methods for a class of problems of optimal flow control on graphs

    Zh. Vychisl. Mat. Mat. Fiz., 23:1 (1983),  223–227
  18. An existence theorem in a minimax control problem

    Zh. Vychisl. Mat. Mat. Fiz., 17:1 (1977),  64–71


© Steklov Math. Inst. of RAS, 2024