|
|
Publications in Math-Net.Ru
-
Equilibrium principle application to routing control in packet data transmission networks
Inform. Primen., 8:1 (2014), 28–35
-
The consistency of the Pareto and Nash optimality principles as applied to the problem of routing in a ring network
Zh. Vychisl. Mat. Mat. Fiz., 38:4 (1998), 590–595
-
Properties of the solutions to the problem of dynamic routing in Networks
Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998), 42–52
-
Properties of the solutions to the task of routing in the network with virtual circuits
Zh. Vychisl. Mat. Mat. Fiz., 37:7 (1997), 785–793
-
The search for a fixed point of a consistently monotone mapping
Zh. Vychisl. Mat. Mat. Fiz., 36:12 (1996), 39–47
-
A parallel algorithm and computer architecture for calculating an inertia matrix
Zh. Vychisl. Mat. Mat. Fiz., 36:6 (1996), 152–158
-
The non-complementarity of equilibrium routings of ring networks
Zh. Vychisl. Mat. Mat. Fiz., 35:5 (1995), 794–801
-
Equilibrium routing of ring networks
Zh. Vychisl. Mat. Mat. Fiz., 35:3 (1995), 452–459
-
A fast parallel algorithm for computing an inertia matrix
Zh. Vychisl. Mat. Mat. Fiz., 35:1 (1995), 135–139
-
The problems of controlling the routing of connections in data transmission networks
Zh. Vychisl. Mat. Mat. Fiz., 31:4 (1991), 605–617
-
A new approach to the numerical solution of non-linear equations
Zh. Vychisl. Mat. Mat. Fiz., 30:11 (1990), 1638–1645
-
Numerical solution of extremal problems on constructing ellipsoids and parallelepipeds
Zh. Vychisl. Mat. Mat. Fiz., 27:3 (1987), 340–348
-
Properties of a flow polyhedron and their applications to numerical solution of extremal problems on graphs
Zh. Vychisl. Mat. Mat. Fiz., 25:5 (1985), 780–783
-
Minimum search in concave problems, using the sufficient condition for a global extremum
Zh. Vychisl. Mat. Mat. Fiz., 25:2 (1985), 190–199
-
An active method of searching for the global minimum of a concave function
Zh. Vychisl. Mat. Mat. Fiz., 24:1 (1984), 152–156
-
Methods of finding the global minimum of a quasi-concave function
Zh. Vychisl. Mat. Mat. Fiz., 23:2 (1983), 307–313
-
Numerical methods for a class of problems of optimal flow control on graphs
Zh. Vychisl. Mat. Mat. Fiz., 23:1 (1983), 223–227
-
An existence theorem in a minimax control problem
Zh. Vychisl. Mat. Mat. Fiz., 17:1 (1977), 64–71
© , 2024