RUS  ENG
Full version
PEOPLE

Boglaev Yurii Pavlovich

Publications in Math-Net.Ru

  1. Parametric coordination of some spline-interpolation algorithms with the architecture of multiprocessor computer systems

    Avtomat. i Telemekh., 1990, no. 4,  166–176
  2. Construction by iterations of fundamental solutions of systems of linear ordinary differential equations in general position

    Dokl. Akad. Nauk SSSR, 300:5 (1988),  1037–1041
  3. Numerical methods for solving singularly perturbed problems

    Differ. Uravn., 21:10 (1985),  1804–1806
  4. Analytic and computational aspects of a block representation of operators in linear equations

    Differ. Uravn., 21:10 (1985),  1743–1750
  5. Block representations of operators and parallel computations in boundary-value problems for second-order linear equations

    Dokl. Akad. Nauk SSSR, 271:2 (1983),  269–272
  6. Singularly perturbed linear equations in spaces of summable functions

    Dokl. Akad. Nauk SSSR, 250:1 (1980),  15–18
  7. The generalized Frobenius formula in singularly perturbed linear equations

    Dokl. Akad. Nauk SSSR, 247:3 (1979),  528–531
  8. Quasilinear equations with a small parameter multiplying the derivative and with a nonperturbed operator on the spectrum in a $B$-space

    Differ. Uravn., 14:6 (1978),  963–973
  9. Uniform approximations to the solutions of certain singularly perturbed nonlinear equations

    Differ. Uravn., 14:3 (1978),  395–406
  10. An iterative sweeping method for approximate solution of nonlinear singularly perturbed boundary-value problems

    Dokl. Akad. Nauk SSSR, 235:6 (1977),  1241–1244
  11. An iteration method for the approximate solution of differential-difference equations with a small retardation

    Zh. Vychisl. Mat. Mat. Fiz., 17:4 (1977),  955–971
  12. An iterative method for the approximate solution of singularly perturbed problems

    Dokl. Akad. Nauk SSSR, 227:5 (1976),  1033–1036
  13. Parameter regularization of some classes of singularly perturbed boundary value problems

    Dokl. Akad. Nauk SSSR, 227:3 (1976),  524–527
  14. An iteration method for the approximate solution of singularity perturbed Volterra integral equations

    Zh. Vychisl. Mat. Mat. Fiz., 16:4 (1976),  883–894
  15. Singularly perturbed integral equations with Cauchy type kernels

    Dokl. Akad. Nauk SSSR, 225:5 (1975),  993–996
  16. A boundary layer in solutions of nonlinear regularly perturbed Volterra integral equations

    Zh. Vychisl. Mat. Mat. Fiz., 15:6 (1975),  1602–1607
  17. Singularly perturbed systems of Volterra integral equations with a nonintegrable singularity

    Dokl. Akad. Nauk SSSR, 218:2 (1974),  261–263
  18. Degeneracy of order of growth in a boundary value problem with a parameter

    Dokl. Akad. Nauk SSSR, 216:2 (1974),  251–252
  19. Interior boundary layer in a boundary value problem with a degeneracy in the order of growth

    Differ. Uravn., 10:11 (1974),  1932–1938
  20. A singularly perturbed boundary value problem with a degeneracy of the order of growth

    Differ. Uravn., 10:9 (1974),  1565–1573
  21. The stable branch points in equations with a small parameter multiplying the derivative

    Zh. Vychisl. Mat. Mat. Fiz., 13:2 (1973),  476–480
  22. On the theory of singularly perturbed problems with branch points for degenerate equations

    Differ. Uravn., 8:5 (1972),  762–766
  23. Asymptotic behavior of the solution of a system of equations with a small parameter multiplying the derivative in the critical case

    Zh. Vychisl. Mat. Mat. Fiz., 11:6 (1971),  1415–1424
  24. Passage of the solution of a system of equations with a small parameter multiplying the derivative to the solution of degenerate equations with branching points

    Zh. Vychisl. Mat. Mat. Fiz., 11:5 (1971),  1193–1204
  25. A construction by Chaplygin functions of a uniform approximation to the solution of a certain equation with a small parameter multiplying the derivative

    Zh. Vychisl. Mat. Mat. Fiz., 11:1 (1971),  96–104
  26. The two-point problem for a certain class of ordinary differential equations with a small parameter multiplying the derivative

    Zh. Vychisl. Mat. Mat. Fiz., 10:4 (1970),  958–968
  27. The smoothing of the optimal solution in a certain control problem

    Zh. Vychisl. Mat. Mat. Fiz., 10:3 (1970),  744–748


© Steklov Math. Inst. of RAS, 2024