RUS  ENG
Full version
PEOPLE

Nelyubin Andrei Pavlovich

Publications in Math-Net.Ru

  1. A method for decision analysis under uncertainty with a qualitative assessment of preferences and probabilities

    Dokl. RAN. Math. Inf. Proc. Upr., 524 (2025),  47–50
  2. Approximation of tabulated functions: A multi-criteria approach. Part II

    Zh. Vychisl. Mat. Mat. Fiz., 65:4 (2025),  426–433
  3. Mean values: a multicriteria approach. Part III

    Probl. Upr., 2024, no. 1,  17–22
  4. Approximation of functions defined in tabular form: multicriteria approach

    Zh. Vychisl. Mat. Mat. Fiz., 63:5 (2023),  717–730
  5. Multicriteria problems with importance-ordered criteria groups

    Avtomat. i Telemekh., 2022, no. 7,  119–136
  6. Means: a multicriteria approach. Part II

    Probl. Upr., 2021, no. 2,  33–41
  7. Mean quantities: a multicriteria approach

    Probl. Upr., 2020, no. 5,  3–16
  8. Multicriteria choice based on criteria importance methods with uncertain preference information

    Zh. Vychisl. Mat. Mat. Fiz., 57:9 (2017),  1494–1502
  9. Analytic decision rules for importance-ordered criteria with a first ordered metric scale in the general form

    Avtomat. i Telemekh., 2014, no. 9,  97–107
  10. Potential non-dominance in choice problems with imprecise preference information

    Artificial Intelligence and Decision Making, 2014, no. 4,  83–95
  11. Analytical decision rules using importance-ordered criteria with a scale of the first ordinal metric

    Avtomat. i Telemekh., 2012, no. 5,  84–96
  12. Algorithmic decision rule using ordinal criteria importance coefficients with a first ordinal metric scale

    Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012),  48–65
  13. Bilinear optimization in the analysis of multicriteria problems using criteria importance theory under inexact information about preferences

    Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011),  802–813


© Steklov Math. Inst. of RAS, 2025