|
|
Publications in Math-Net.Ru
-
Extending the functionality of blind accumulators: contexts
Journal of the Belarusian State University. Mathematics and Informatics, 1 (2024), 79–85
-
An upper bound on binomial coefficients in the de Moivre – Laplace form
Journal of the Belarusian State University. Mathematics and Informatics, 1 (2022), 66–74
-
Small scalar multiplication on Weierstrass curves using division polynomials
Mat. Vopr. Kriptogr., 13:2 (2022), 17–35
-
On the guaranteed number of activations in $\mathsf{XS}$-circuits
Mat. Vopr. Kriptogr., 12:2 (2021), 7–20
-
XS-circuits: hiding round oracles
Prikl. Diskr. Mat. Suppl., 2021, no. 14, 59–61
-
The Counter mode with encrypted nonces and its extension to authenticated encryption
Mat. Vopr. Kriptogr., 11:2 (2020), 7–24
-
On the continuation to bent functions and upper bounds on their number
Prikl. Diskr. Mat. Suppl., 2020, no. 13, 18–21
-
$\mathsf{XS}$-circuits in block ciphers
Mat. Vopr. Kriptogr., 10:2 (2019), 7–30
-
On probabilities of differential trails in the Bash-f sponge function
Prikl. Diskr. Mat. Suppl., 2019, no. 12, 86–90
-
Mathematical methods in solutions of the problems presented at the Third International Students' Olympiad in Cryptography
Prikl. Diskr. Mat., 2018, no. 40, 34–58
-
EHE: nonce misuse-resistant message authentication
Prikl. Diskr. Mat., 2018, no. 39, 33–41
-
Bash-f: another LRX sponge function
Mat. Vopr. Kriptogr., 8:2 (2017), 7–28
-
Problems, solutions and experience of the first international student's Olympiad in cryptography
Prikl. Diskr. Mat., 2015, no. 3(29), 41–62
-
Improved Buchberger's algorithm
Tr. Inst. Mat., 20:1 (2012), 3–13
-
On the affine classification of cubic bent functions
Tr. Inst. Mat., 14:1 (2006), 3–11
-
An overview of the Eight International Olympiad in Cryptography “Non-Stop University CRYPTO”
Sib. Èlektron. Mat. Izv., 19:1 (2022), 9–37
-
The Seventh International Olympiad in Cryptography: problems and solutions
Sib. Èlektron. Mat. Izv., 18:2 (2021), 4–29
-
On the Sixth International Olympiad in Cryptography NSUCRYPTO
Diskretn. Anal. Issled. Oper., 27:4 (2020), 21–57
© , 2025