RUS  ENG
Full version
PEOPLE

Molodets Alexandr Mikhailovich

Publications in Math-Net.Ru

  1. Physicochemical transformations of boron carbide at high temperatures and high pressures of shock compression

    TVT, 60:2 (2022),  208–212
  2. The volume–temperature dependence of electrical and thermophysical properties of $\alpha$ iron under high pressures and temperatures

    Zhurnal Tekhnicheskoi Fiziki, 91:9 (2021),  1403–1408
  3. Magnetic transformations and polymorphic transition of ferromagnetic steels under shock-wave loading

    Zhurnal Tekhnicheskoi Fiziki, 91:5 (2021),  803–807
  4. Spall strength of shock-heated zirconium and phase diagram of its high-pressure polymorphic modification

    Fizika Tverdogo Tela, 62:1 (2020),  59–68
  5. Melting of shocked boron carbide

    Pis'ma v Zh. Èksper. Teoret. Fiz., 111:12 (2020),  838–845
  6. Spall strength of shock-heated hafnium and the equations of state of its polymorphic modifications

    Fizika Tverdogo Tela, 61:8 (2019),  1492–1498
  7. Spall strength of amorphous carbon (glassy carbon) under shock loading in the region of its anomalous compressibility

    Pis'ma v Zh. Èksper. Teoret. Fiz., 109:7 (2019),  460–465
  8. The spall strength and dynamic yield stress of hafnium

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:2 (2019),  29–32
  9. Amorphization and a polymorphic transformation of boron stimulated by high dynamic pressures

    Pis'ma v Zh. Èksper. Teoret. Fiz., 108:6 (2018),  430–434
  10. Electrical conductivity and equations of states of $\beta$-rhombohedral boron in the megabar dynamic pressure range

    Fizika Tverdogo Tela, 59:7 (2017),  1379–1386
  11. Semiempirical description of thermophysical properties of lithium deuteride at high pressures and temperatures

    TVT, 55:4 (2017),  523–527
  12. Equation of state of quartz glass and cerium in their abnormal compressibility range

    Fizika Tverdogo Tela, 58:9 (2016),  1744–1748
  13. Shock-wave-induced grain refinement and phase state modification in coarse-grained and nanocrystalline titanium

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:18 (2016),  63–71
  14. Model for calculating shock-compression parameters of a platelet gradient mixture

    Prikl. Mekh. Tekh. Fiz., 56:4 (2015),  92–100
  15. Jump in the electrical conductivity of shock-compressed glassy carbon

    Pis'ma v Zh. Èksper. Teoret. Fiz., 99:4 (2014),  263–267
  16. Equation of state of polytetrafluoroethylene for calculating shock compression parameters at megabar pressures

    Fizika Goreniya i Vzryva, 49:6 (2013),  121–129
  17. Equations of state of silver azide and calculation of its Hugoniots

    Fizika Goreniya i Vzryva, 49:4 (2013),  114–119
  18. Electrical resistivity of plastic insulation at megabar shock pressures

    Fizika Goreniya i Vzryva, 49:2 (2013),  106–112
  19. Electronic component in a semiempirical description of the thermal properties of molten diamond

    Fizika Goreniya i Vzryva, 44:4 (2008),  127–129
  20. Family of shock adiabats of a solid with different initial temperatures

    Fizika Goreniya i Vzryva, 42:3 (2006),  110–115
  21. Phase transitions in uranium dioxide at high pressures and temperatures

    Pis'ma v Zh. Èksper. Teoret. Fiz., 80:3 (2004),  196–199
  22. Electrophysical properties of calcium at high pressures and temperatures

    Pis'ma v Zh. Èksper. Teoret. Fiz., 79:7 (2004),  425–431
  23. Kinks of Shock Adiabats for $\beta$$\text{Sn}$ and $\gamma$$\text{Sn}$

    TVT, 40:3 (2002),  521–524
  24. Use of the Grüneisen coefficient in calculations of temperature along the isentrope of elementary substances

    Fizika Goreniya i Vzryva, 37:4 (2001),  100–105
  25. Determination of the slope of the phase–equilibrium line by Lagrangian gauges in shock waves

    Fizika Goreniya i Vzryva, 37:2 (2001),  116–120
  26. Thermodynamic potentials of carbon

    Fizika Goreniya i Vzryva, 36:2 (2000),  88–93
  27. Thermodynamic potentials, diagram of state, and phase transitions of tin on shock compression

    TVT, 38:5 (2000),  741–747
  28. Free energy of liquid diamond

    Fizika Goreniya i Vzryva, 35:2 (1999),  81–87
  29. Free energy of diamond

    Fizika Goreniya i Vzryva, 34:4 (1998),  94–101
  30. Helmholtz' free energy of molten metals

    TVT, 36:6 (1998),  914–920
  31. Equation of state for solid chemical elements

    Dokl. Akad. Nauk, 353:5 (1997),  610–612
  32. Gruneisen function based on shock wave law of solid material

    Dokl. Akad. Nauk, 341:6 (1995),  753–754
  33. Generalized Grüneisen function for condensed media

    Fizika Goreniya i Vzryva, 31:5 (1995),  132–133
  34. Cleavage fracture of Armco iron under a complicated one-dimensional load

    Fizika Goreniya i Vzryva, 31:3 (1995),  63–71
  35. Electrical response of a piezoelectric polymer film to shock compression

    Fizika Goreniya i Vzryva, 30:5 (1994),  149–154
  36. Microstructural mechanisms of spall fraction of iron

    Fizika Goreniya i Vzryva, 25:4 (1989),  101–108
  37. Continuous recording of free surface velocity during spalling fallure of iron in the cryogenic temperature range

    Fizika Goreniya i Vzryva, 22:2 (1986),  110–114
  38. Evaluation of the kinetics of a nonequilibrium process in a one-dimenstonal plane stress wave

    Fizika Goreniya i Vzryva, 22:2 (1986),  105–110
  39. Mechanical energy dissipation and damping factor in spall-damaged material

    Fizika Goreniya i Vzryva, 20:2 (1984),  79–86
  40. Temperature dependence of the spall strength

    Fizika Goreniya i Vzryva, 19:5 (1983),  154–158
  41. Extension of the principles of the kinetic conception of strength to the process of spalling fracture

    Fizika Goreniya i Vzryva, 19:1 (1983),  88–94
  42. Subcritical stage of cleavage fracture of polymethyl methacrylate

    Fizika Goreniya i Vzryva, 16:5 (1980),  74–77
  43. Kinetic characteristics of spall fracture

    Prikl. Mekh. Tekh. Fiz., 21:6 (1980),  85–95
  44. Investigation of singularities of glass strain under intense compression waves

    Fizika Goreniya i Vzryva, 13:6 (1977),  906–912
  45. Dynamic characteristics of plexiglas in unloading waves

    Fizika Goreniya i Vzryva, 12:4 (1976),  628–631
  46. Hurling of plates by an explosion

    Fizika Goreniya i Vzryva, 10:6 (1974),  884–891


© Steklov Math. Inst. of RAS, 2024