RUS  ENG
Full version
PEOPLE

Ershov Igor' Valer'evich

Publications in Math-Net.Ru

  1. Influence of thermochemical nonequilibrium on characteristics of boundary layer at flight in the Martian atmosphere

    Chelyab. Fiz.-Mat. Zh., 9:2 (2024),  213–221
  2. Influence of vibrational excitation of the gas on the position of the laminar–turbulent transition region on a flat plate

    Prikl. Mekh. Tekh. Fiz., 62:1 (2021),  14–21
  3. Convergence of locally self-similar solutions to exact numerical solutions of boundary layer equations for a plate

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 71,  49–62
  4. Asymptotic theory of neutral stability of the Couette flow of a vibrationally excited gas

    Prikl. Mekh. Tekh. Fiz., 58:1 (2017),  3–21
  5. Linear stability of the Couette flow of a vibrationally excited gas. 2. Viscous problem

    Prikl. Mekh. Tekh. Fiz., 57:2 (2016),  64–75
  6. Stability of the Couette flow of a diatomic gas in conditions of viscous stratification and vibrational mode excitation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 4(42),  84–99
  7. Stability of a supersonic couette flow of vibrationally excited diatomic gas

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 1(33),  47–62
  8. Linear stability of the Couette flow of a vibrationally excited gas. 1. Inviscid problem

    Prikl. Mekh. Tekh. Fiz., 55:2 (2014),  80–93
  9. Energy estimate of critical Reynolds numbers in the supersonic Couette flow of a vibrationally excited diatomic gas

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 6(32),  66–79
  10. The linear stability of an inviscid shear flow of a thermally non-equilibrium molecular gas

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 1(27),  71–81
  11. Stability of the Couette flow of a vibrationally nonequilibrium of molecular gas. Energy approach

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 3(23),  76–88
  12. Critical Reynolds number of the Couette flow of a vibrationally excited diatomic gas energy approach

    Prikl. Mekh. Tekh. Fiz., 53:4 (2012),  57–73
  13. Energy estimate of the critical Reynolds numbers in the Couette flow of a vibrationally nonequilibrium molecular gas

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 2(18),  99–112
  14. Dissipation of Kelvin–Helmholtz waves in vibrational non-equilibrium diatomic gas

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 1(17),  68–80
  15. Energy estimate of the critical Reynolds numbers in a compressible Couette flow. Effect of bulk viscosity

    Prikl. Mekh. Tekh. Fiz., 51:5 (2010),  59–67
  16. Effect of bulk viscosity on Kelvin–Helmholtz instability

    Prikl. Mekh. Tekh. Fiz., 49:3 (2008),  73–84
  17. Experimental investigation of the process of interaction between heterogeneous flows and flying bodies

    TVT, 46:4 (2008),  563–569
  18. Influence of vibrational relaxation on the pulsation activity in flows of an excited diatomic gas

    Prikl. Mekh. Tekh. Fiz., 45:3 (2004),  15–23
  19. Relaxation-induced suppression of vortex disturbances in a molecular gas

    Prikl. Mekh. Tekh. Fiz., 44:4 (2003),  22–34
  20. Расчет осесимметричных неоднородностей при наличии внутренних поверхностей разрыва

    TVT, 12:3 (1974),  600–604
  21. Quantitative studies of shock-wave processes behind a shock wave with the aid of shadow methods

    Prikl. Mekh. Tekh. Fiz., 10:1 (1969),  101–104


© Steklov Math. Inst. of RAS, 2025