RUS  ENG
Full version
PEOPLE

Salnikova Tatiana Vladimirovna

Publications in Math-Net.Ru

  1. Dynamics of the system in the presence of invariant relationships

    Dokl. RAN. Math. Inf. Proc. Upr., 521 (2025),  63–71
  2. Localization of solutions of ordinary differential equations near an unstable singular point

    Mat. Zametki, 117:1 (2025),  91–98
  3. Geometric structures for differential constraints in Lagrangian and Hamiltonian formalism

    Uspekhi Mat. Nauk, 80:3(483) (2025),  183–184
  4. Generalization of Jacobi’s theorem on the last multiplier

    Dokl. RAN. Math. Inf. Proc. Upr., 517 (2024),  109–114
  5. Existence of Localized Motions in the Vicinity of an Unstable Equilibrium Position

    Trudy Mat. Inst. Steklova, 327 (2024),  128–139
  6. Dynamics of systems with one-sided differential constraints

    Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023),  12–19
  7. Existence and stability of equilibrium solutions of the Vlasov equation with a modified gravitational potential

    Dokl. RAN. Math. Inf. Proc. Upr., 500 (2021),  67–73
  8. Jacobi stability of a many-body system with modified potential

    Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020),  90–94
  9. Simulation of the interaction of oppositely directed particle flows

    Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020),  1787–1794
  10. A note on Lagrange’s top theory

    Nelin. Dinam., 14:1 (2018),  139–143
  11. On the motion of free disc on the rough horisontal plane

    Nelin. Dinam., 8:1 (2012),  83–101
  12. On the problem of the motion of a perturbed symmetric rigid body

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2000, no. 3,  69–70
  13. On periodic solutions of the three-dimensional restricted three-body problem

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 4,  73–77
  14. Integrability of the Kirchhoff equations in the symmetrical case

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 4,  68–71
  15. Branching of solutions of the perturbed Lagrange problem and the nonexistence of univalued integrals

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, no. 2,  85–87
  16. Nonintegrability of perturbed Lagrange problem

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 4,  62–66


© Steklov Math. Inst. of RAS, 2025