RUS  ENG
Full version
PEOPLE

Totieva Zhanna Dmitrievna

Publications in Math-Net.Ru

  1. An inverse two-dimensional problem for determining two unknowns in equation of memory type for a weakly horizontally inhomogeneous medium

    Vladikavkaz. Mat. Zh., 26:3 (2024),  112–134
  2. Determination of non-stationary potential analytical with respect to spatial variables

    J. Sib. Fed. Univ. Math. Phys., 15:5 (2022),  565–576
  3. Determination of a non-stationary adsorption coefficient analytical in part of spatial variables

    Mat. Tr., 25:2 (2022),  88–106
  4. Coefficient reconstruction problem for the two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium

    TMF, 213:2 (2022),  193–213
  5. About global solvability of a multidimensional inverse problem for an equation with memory

    Sibirsk. Mat. Zh., 62:2 (2021),  269–285
  6. Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory

    Vladikavkaz. Mat. Zh., 23:4 (2021),  15–27
  7. Linearized two-dimensional inverse problem of determining the kernel of the viscoelasticity equation

    Vladikavkaz. Mat. Zh., 23:2 (2021),  87–103
  8. Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives

    Sib. Èlektron. Mat. Izv., 17 (2020),  1106–1127
  9. Determining the kernel of the viscoelasticity equation in a medium with slightly horizontal homogeneity

    Sibirsk. Mat. Zh., 61:2 (2020),  453–475
  10. One-dimensional inverse coefficient problems of anisotropic viscoelasticity

    Sib. Èlektron. Mat. Izv., 16 (2019),  786–811
  11. The problem of determining the matrix kernel of the anisotropic viscoelasticity equations system

    Vladikavkaz. Mat. Zh., 21:2 (2019),  58–66
  12. The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation

    Mat. Zametki, 103:1 (2018),  129–146
  13. The problem of determining the coefficient of thermal expansion of the equation of thermoviscoelasticity

    Sib. Èlektron. Mat. Izv., 14 (2017),  1108–1119
  14. The problem of determining the one-dimensional kernel of the electroviscoelasticity equation

    Sibirsk. Mat. Zh., 58:3 (2017),  553–572
  15. The multidimensional problem of determining the density function for the system of viscoelasticity

    Sib. Èlektron. Mat. Izv., 13 (2016),  635–644
  16. The problem of determining the multidimensional kernel of viscoelasticity equation

    Vladikavkaz. Mat. Zh., 17:4 (2015),  18–43
  17. The problem of determining the one-dimensional kernel of the viscoelasticity equation

    Sib. Zh. Ind. Mat., 16:2 (2013),  72–82
  18. On the fundamental solution of the Cauchy problem for a hyperbolic operator

    Vladikavkaz. Mat. Zh., 14:2 (2012),  45–49

  19. Alexander Ovanesovich Vatulyan (on his 70th anniversary)

    Vladikavkaz. Mat. Zh., 25:4 (2023),  143–147


© Steklov Math. Inst. of RAS, 2024