RUS  ENG
Full version
PEOPLE

Yaroslavtsev Andrei Borisovich

Publications in Math-Net.Ru

  1. Composite cathode material based on sulfur and microporous carbon for Li–S batteries

    Mendeleev Commun., 34:4 (2024),  478–480
  2. Solid-state electrolytes: a way to increase the power of lithium-ion batteries

    Usp. Khim., 93:6 (2024),  1–36
  3. Improvement of Li/Mg monovalent ion selectivity of cation-exchange membranes by incorporation of cerium or zirconium phosphate particles

    Mendeleev Commun., 33:3 (2023),  365–367
  4. Recent progress in lithium-ion and lithium metal batteries

    Mendeleev Commun., 32:3 (2022),  287–297
  5. Effect of ultrasonic treatment of Nafion® solution on the performance of fuel cells

    Mendeleev Commun., 32:2 (2022),  224–225
  6. Current progress in membranes for fuel cells and reverse electrodialysis

    Mendeleev Commun., 31:4 (2021),  423–432
  7. Hydrogen energy: development prospects and materials

    Usp. Khim., 90:6 (2021),  627–643
  8. Polymer electrolytes for metal-ion batteries

    Usp. Khim., 89:10 (2020),  1132–1155
  9. High pressure synthesis and transport properties of a perfluorinated sulfocationic exchange membrane

    Mendeleev Commun., 29:6 (2019),  661–662
  10. Effect of the nature of functional groups grafted on the surface of silica nanoparticles on properties of the hybrid proton-conductive membranes based on N-phosphorylated polybenzimidazole

    Mendeleev Commun., 29:4 (2019),  403–404
  11. Hybrid membranes based on short side chain perfluorinated sulfonic acid membranes (Inion) and heteropoly acid salts

    Mendeleev Commun., 28:6 (2018),  657–658
  12. New approach to the preparation of grafted ion exchange membranes based on UV-oxidized polymer films and sulfonated polystyrene

    Mendeleev Commun., 27:6 (2017),  572–573
  13. Water state and ionic conductivity of grafted ion exchange membranes based on polyethylene and sulfonated polystyrene

    Mendeleev Commun., 27:4 (2017),  380–381
  14. Activation of NaFePO4 with maricite structure for application as a cathode material in sodium-ion batteries

    Mendeleev Commun., 27:3 (2017),  263–264
  15. Effect of the treatment of MF-4SC membranes on the cross sensitivity of Donnan potential sensors to cations in the aqueous solutions of organic ampholytes

    Mendeleev Commun., 26:6 (2016),  505–507
  16. New high-capacity anode materials based on gallium-doped lithium titanate

    Mendeleev Commun., 26:3 (2016),  238–239
  17. Phase transitions and proton conductivity in hafnium hydrogen phosphate with the NASICON structure

    Mendeleev Commun., 26:2 (2016),  152–153
  18. Solid electrolytes: main prospects of research and development

    Usp. Khim., 85:11 (2016),  1255–1276
  19. An improvement in the ionic conductivity and electrochemical characteristics of LiFePO4 by heterogeneous doping with NASICON-type phosphate

    Mendeleev Commun., 25:3 (2015),  207–208
  20. Relationships between water uptake, conductivity and mechanical properties of hybrid MF-4SC membranes doped by silica nanoparticles

    Mendeleev Commun., 25:1 (2015),  54–55
  21. Electrode nanomaterials for lithium-ion batteries

    Usp. Khim., 84:8 (2015),  826–852
  22. Hybrid membranes containing inorganic nanoparticles

    Mendeleev Commun., 24:6 (2014),  319–326
  23. Temperature control-type electrolyte based on tungstovanadosilicic heteropoly acid and trioctylmethylammonium chloride

    Mendeleev Commun., 24:3 (2014),  147–148
  24. Lithium intercalation and deintercalation into lithium–iron phosphates doped with cobalt

    Mendeleev Commun., 23:5 (2013),  251–252
  25. Low temperature methane coupling in a Pd-based membrane reactor with UV activation

    Mendeleev Commun., 23:2 (2013),  69–70
  26. Hybrid materials based on MF-4SC perfluorinated sulfo cation-exchange membranes and silica with proton-acceptor properties

    Mendeleev Commun., 23:2 (2013),  66–68
  27. Preparation and Conductivity of a Hybrid Material based on Tungstovanadosilicic Acid Polyvinylpyrrolidone

    Mendeleev Commun., 23:1 (2013),  29–30
  28. Membrane catalysis in dehydrogenation and hydrogen production processes

    Usp. Khim., 82:4 (2013),  352–368
  29. Perfluorinated sulfocation-exchange membranes modified with zirconia for sensors susceptible to organic anions in multiionic aqueous solutions

    Mendeleev Commun., 22:2 (2012),  83–84
  30. Nanostructured materials for low-temperature fuel cells

    Usp. Khim., 81:3 (2012),  191–220
  31. Influence of incorporated nanoparticles on the ionic conductivity of MF-4SC membrane

    Mendeleev Commun., 20:3 (2010),  156–157
  32. Synthesis and transport properties of membrane materials with incorporated metal nanoparticles

    Mendeleev Commun., 20:2 (2010),  89–91
  33. Composite materials with ionic conductivity: from inorganic composites to hybrid membranes

    Usp. Khim., 78:11 (2009),  1094–1112
  34. Conductivity and phase transitions in a potassium–magnesium molybdate

    Mendeleev Commun., 17:2 (2007),  95–96
  35. Phase transition through intermediate formation?

    Mendeleev Commun., 14:5 (2004),  191–193
  36. Ion transfer in ion-exchange and membrane materials

    Usp. Khim., 72:5 (2003),  438–470
  37. Proton mobility in the composites of iron acid sulfate monohydrate with silica

    Mendeleev Commun., 12:6 (2002),  223–224
  38. Influence of anions on the kinetics of hydrogen/sodium ion exchange in a crystalline acid zirconium phosphate

    Mendeleev Commun., 9:2 (1999),  50–53
  39. Ion exchange on inorganic sorbents

    Usp. Khim., 66:7 (1997),  641–660
  40. Ion-exchange in acid tantalum phosphate

    Mendeleev Commun., 6:2 (1996),  56–57
  41. Synthesis and Proton Conductivity of Acid Tantalum Phosphate

    Mendeleev Commun., 5:4 (1995),  136–137
  42. Proton Transfer in Low Temperature Proton Conductors

    Mendeleev Commun., 5:2 (1995),  46–49
  43. Proton conductivity of inorganic hydrates

    Usp. Khim., 63:5 (1994),  449–455


© Steklov Math. Inst. of RAS, 2025