RUS  ENG
Full version
PEOPLE

Nikolaev Vladimir Gennad'evich

Publications in Math-Net.Ru

  1. On one method for constructing solutions to the homogeneous schwarz problem

    Applied Mathematics & Physics, 55:4 (2023),  305–312
  2. Schwarz problem for $J$-analytic functions in an ellipse

    Zh. Vychisl. Mat. Mat. Fiz., 62:7 (2022),  1115–1137
  3. On a relation between real and holomorphic functions

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 195 (2021),  68–74
  4. On linearly independent solutions of the homogeneous Schwartz problem

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 160 (2019),  95–104
  5. On the solutions of the Schwartz homogeneous problem in the form of vector polynomials of the second degree

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:3 (2019),  41–46
  6. One form of the scalar two-dimensional Schwarz problem and its applications

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:2 (2017),  30–35
  7. On decisions of Schwartz' problem for $J$-analytic functions with the same Jordan basis of real and imaginary parts of $J$-matrix

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016),  410–422
  8. About the unsolvability of Schwarz's task for some types of matrices

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:1 (2016),  13–18
  9. On some properties of $J$-analytical functions

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 3(104),  25–32
  10. About a transformation of Schwarz problem

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2012, no. 6(97),  27–34


© Steklov Math. Inst. of RAS, 2024