RUS  ENG
Full version
PEOPLE

Bazhenov Nikolay Alekseevich

Publications in Math-Net.Ru

  1. Decidable categoricity spectra for almost prime models

    Algebra Logika, 62:4 (2023),  441–457
  2. A note on joins and meets for positive linear preorders

    Sib. Èlektron. Mat. Izv., 20:1 (2023),  1–16
  3. On universal positive graphs

    Sibirsk. Mat. Zh., 64:1 (2023),  98–112
  4. Minimal generalized computable numberings and families of positive preorders

    Algebra Logika, 61:3 (2022),  280–307
  5. Index sets for classes of positive preorders

    Algebra Logika, 61:1 (2022),  42–76
  6. Punctual categoricity spectra of computably categorical structures

    Algebra Logika, 60:3 (2021),  335–343
  7. Computable embeddings for pairs of linear orders

    Algebra Logika, 60:3 (2021),  251–285
  8. HKSS-completeness of modal algebras

    Sib. Èlektron. Mat. Izv., 18:2 (2021),  923–930
  9. On categoricity spectra for locally finite graphs

    Sibirsk. Mat. Zh., 62:5 (2021),  983–994
  10. On universal pairs in the Ershov hierarchy

    Sibirsk. Mat. Zh., 62:1 (2021),  31–41
  11. Numberings in the analytical hierarchy

    Algebra Logika, 59:5 (2020),  594–599
  12. The structure of computably enumerable preorder relations

    Algebra Logika, 59:3 (2020),  293–314
  13. A note on decidable categoricity and index sets

    Sib. Èlektron. Mat. Izv., 17 (2020),  1013–1026
  14. Constructing decidable graphs from decidable structures

    Algebra Logika, 58:5 (2019),  553–573
  15. Weakly precomplete equivalence relations in the Ershov hierarchy

    Algebra Logika, 58:3 (2019),  297–319
  16. On decidability of list structures

    Sibirsk. Mat. Zh., 60:3 (2019),  489–505
  17. Rogers semilattices for families of equivalence relations in the Ershov hierarchy

    Sibirsk. Mat. Zh., 60:2 (2019),  290–305
  18. Computable bi-embeddable categoricity

    Algebra Logika, 57:5 (2018),  601–608
  19. Degrees of autostability for prime Boolean algebras

    Algebra Logika, 57:2 (2018),  149–174
  20. Categoricity spectra of computable structures

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018),  42–58
  21. Degrees of autostability relative to strong constructivizations of graphs

    Sibirsk. Mat. Zh., 59:4 (2018),  719–735
  22. On dark computably enumerable equivalence relations

    Sibirsk. Mat. Zh., 59:1 (2018),  29–40
  23. Boolean algebras realized by c.e. equivalence relations

    Sib. Èlektron. Mat. Izv., 14 (2017),  848–855
  24. Computability of distributive lattices

    Sibirsk. Mat. Zh., 58:6 (2017),  1236–1251
  25. The index set of the groups autostable relative to strong constructivizations

    Sibirsk. Mat. Zh., 58:1 (2017),  95–103
  26. Degrees of autostability for linear orderings and linearly ordered Abelian groups

    Algebra Logika, 55:4 (2016),  393–418
  27. Degrees of categoricity vs. strong degrees of categoricity

    Algebra Logika, 55:2 (2016),  257–263
  28. Degrees of autostability relative to strong constructivizations for Boolean algebras

    Algebra Logika, 55:2 (2016),  133–155
  29. The branching theorem and computable categoricity in the Ershov hierarchy

    Algebra Logika, 54:2 (2015),  137–157
  30. Automatic structures and the theory of lists

    Sib. Èlektron. Mat. Izv., 12 (2015),  714–722
  31. The index set of Boolean algebras autostable relative to strong constructivizations

    Sibirsk. Mat. Zh., 56:3 (2015),  498–512
  32. The index set of linear orderings that are autostable relative to strong constructivizations

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:3 (2015),  51–60
  33. Boolean algebras with distinguished endomorphisms and generating trees

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:1 (2015),  29–44
  34. Autostability spectra for Boolean algebras

    Algebra Logika, 53:6 (2014),  764–769
  35. D.c.e. degrees of categoricity for Boolean algebras with a distinguished automorphism

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:1 (2014),  19–27
  36. Computable numberings of the class of Boolean algebras with distinguished endomorphisms

    Algebra Logika, 52:5 (2013),  535–552
  37. Degrees of categoricity for superatomic Boolean algebras

    Algebra Logika, 52:3 (2013),  271–283
  38. Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism

    Algebra Logika, 52:2 (2013),  131–144
  39. On $\Delta^0_2$-Categoricity of Boolean Algebras

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:2 (2013),  3–14
  40. Constructivizability of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism

    Algebra Logika, 51:5 (2012),  579–607
  41. Hyperarithmetical Categoricity of the Boolean Algebra $\mathfrak{B}(\omega^{\alpha}\times\eta)$

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:3 (2012),  35–45


© Steklov Math. Inst. of RAS, 2024