|
|
Publications in Math-Net.Ru
-
Decidable categoricity spectra for almost prime models
Algebra Logika, 62:4 (2023), 441–457
-
A note on joins and meets for positive linear preorders
Sib. Èlektron. Mat. Izv., 20:1 (2023), 1–16
-
On universal positive graphs
Sibirsk. Mat. Zh., 64:1 (2023), 98–112
-
Minimal generalized computable numberings and families of positive preorders
Algebra Logika, 61:3 (2022), 280–307
-
Index sets for classes of positive preorders
Algebra Logika, 61:1 (2022), 42–76
-
Punctual categoricity spectra of computably categorical structures
Algebra Logika, 60:3 (2021), 335–343
-
Computable embeddings for pairs of linear orders
Algebra Logika, 60:3 (2021), 251–285
-
HKSS-completeness of modal algebras
Sib. Èlektron. Mat. Izv., 18:2 (2021), 923–930
-
On categoricity spectra for locally finite graphs
Sibirsk. Mat. Zh., 62:5 (2021), 983–994
-
On universal pairs in the Ershov hierarchy
Sibirsk. Mat. Zh., 62:1 (2021), 31–41
-
Numberings in the analytical hierarchy
Algebra Logika, 59:5 (2020), 594–599
-
The structure of computably enumerable preorder relations
Algebra Logika, 59:3 (2020), 293–314
-
A note on decidable categoricity and index sets
Sib. Èlektron. Mat. Izv., 17 (2020), 1013–1026
-
Constructing decidable graphs from decidable structures
Algebra Logika, 58:5 (2019), 553–573
-
Weakly precomplete equivalence relations in the Ershov hierarchy
Algebra Logika, 58:3 (2019), 297–319
-
On decidability of list structures
Sibirsk. Mat. Zh., 60:3 (2019), 489–505
-
Rogers semilattices for families of equivalence relations in the Ershov hierarchy
Sibirsk. Mat. Zh., 60:2 (2019), 290–305
-
Computable bi-embeddable categoricity
Algebra Logika, 57:5 (2018), 601–608
-
Degrees of autostability for prime Boolean algebras
Algebra Logika, 57:2 (2018), 149–174
-
Categoricity spectra of computable structures
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018), 42–58
-
Degrees of autostability relative to strong constructivizations of graphs
Sibirsk. Mat. Zh., 59:4 (2018), 719–735
-
On dark computably enumerable equivalence relations
Sibirsk. Mat. Zh., 59:1 (2018), 29–40
-
Boolean algebras realized by c.e. equivalence relations
Sib. Èlektron. Mat. Izv., 14 (2017), 848–855
-
Computability of distributive lattices
Sibirsk. Mat. Zh., 58:6 (2017), 1236–1251
-
The index set of the groups autostable relative to strong constructivizations
Sibirsk. Mat. Zh., 58:1 (2017), 95–103
-
Degrees of autostability for linear orderings and linearly ordered Abelian groups
Algebra Logika, 55:4 (2016), 393–418
-
Degrees of categoricity vs. strong degrees of categoricity
Algebra Logika, 55:2 (2016), 257–263
-
Degrees of autostability relative to strong constructivizations for Boolean algebras
Algebra Logika, 55:2 (2016), 133–155
-
The branching theorem and computable categoricity in the Ershov hierarchy
Algebra Logika, 54:2 (2015), 137–157
-
Automatic structures and the theory of lists
Sib. Èlektron. Mat. Izv., 12 (2015), 714–722
-
The index set of Boolean algebras autostable relative to strong constructivizations
Sibirsk. Mat. Zh., 56:3 (2015), 498–512
-
The index set of linear orderings that are autostable relative to strong constructivizations
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:3 (2015), 51–60
-
Boolean algebras with distinguished endomorphisms and generating trees
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15:1 (2015), 29–44
-
Autostability spectra for Boolean algebras
Algebra Logika, 53:6 (2014), 764–769
-
D.c.e. degrees of categoricity for Boolean algebras with a distinguished automorphism
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:1 (2014), 19–27
-
Computable numberings of the class of Boolean algebras with distinguished endomorphisms
Algebra Logika, 52:5 (2013), 535–552
-
Degrees of categoricity for superatomic Boolean algebras
Algebra Logika, 52:3 (2013), 271–283
-
Computable categoricity of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism
Algebra Logika, 52:2 (2013), 131–144
-
On $\Delta^0_2$-Categoricity of Boolean Algebras
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:2 (2013), 3–14
-
Constructivizability of the Boolean algebra $\mathfrak B(\omega)$ with a distinguished automorphism
Algebra Logika, 51:5 (2012), 579–607
-
Hyperarithmetical Categoricity of the Boolean Algebra $\mathfrak{B}(\omega^{\alpha}\times\eta)$
Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 12:3 (2012), 35–45
© , 2024