RUS  ENG
Full version
PEOPLE

Bychkov Evgeniy Victorovich

Publications in Math-Net.Ru

  1. Algorithm for numerical solution of the optimal control problem for one hydrodynamics model using the COBYLA method

    J. Comp. Eng. Math., 11:4 (2024),  40–47
  2. Optimal control of solutions to the Cauchy problem for an incomplete semilinear Sobolev type equation of the second order

    J. Comp. Eng. Math., 10:3 (2023),  24–37
  3. Convergence of an approximate solution of the Showalter–Sidorov–Dirichlet problem for the modified Boussinesq equation

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217 (2022),  11–19
  4. Algorithm for numerical solution of the optimal control problem for the mathematical model of shallow water wave propagation

    J. Comp. Eng. Math., 9:2 (2022),  73–80
  5. Development of the theory of optimal dynamic measurement

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  19–33
  6. Semilinear Sobolev type mathematical models

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  43–59
  7. Analytical study of the mathematical model of wave propagation in shallow water by the Galerkin method

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:1 (2021),  26–38
  8. Optimal control in the mathematical model of internal waves

    J. Comp. Eng. Math., 7:1 (2020),  62–71
  9. The Pyt'ev–Chulichkov method for constructing a measurement in the Shestakov–Sviridyuk model

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:4 (2020),  81–93
  10. Stochastic mathematical model of internal waves

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:2 (2020),  33–42
  11. Mathematical model of acoustic waves in a bounded domain with “white noise”

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:3 (2019),  12–19
  12. Finite difference method for modified Boussinesq equation

    J. Comp. Eng. Math., 5:4 (2018),  58–63
  13. The Cauchy problem for the Sobolev type equation of higher order

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:1 (2018),  5–14
  14. Sobolev type equation in $(n, p)$-sectorial case

    J. Comp. Eng. Math., 4:2 (2017),  66–72
  15. Optimal control of solutions to the initial-final problem for the Sobolev type equation of higher order

    J. Comp. Eng. Math., 3:2 (2016),  57–67
  16. A linearized model of vibrations in the DNA molecule in the quasi-Banach spaces

    J. Comp. Eng. Math., 3:1 (2016),  20–26
  17. The numerical solution of some classes of the semilinear Sobolev-type equations

    J. Comp. Eng. Math., 1:1 (2014),  17–25
  18. On a Semilinear Sobolev-Type Mathematical Model

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:2 (2014),  111–117
  19. The Phase Space of the Modified Boussinesq Equation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 12,  13–19

  20. Alexander Leonidovich Shestakov (to Anniversary Since Birth)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  142–146
  21. Георгий Анатольевич Свиридюк (к юбилею)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  123–127
  22. Jacek Banasiak (on 60th birthday)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  172–174
  23. To the 65th anniversary of professor G. A. Sviridyuk

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017),  155–158
  24. Sergei Ivanovich Kadchenko (to the 65th anniversary)

    J. Comp. Eng. Math., 2:4 (2015),  100–102


© Steklov Math. Inst. of RAS, 2025