RUS  ENG
Full version
PEOPLE

Kolesnikov Ivan Aleksandrovich

Publications in Math-Net.Ru

  1. Conformal mapping of a strip onto a circular numerable polygon of strip type

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 9,  34–44
  2. Conformal mapping of a half-plane onto a periodic polygon of half-plane type

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 77,  5–16
  3. The Fekete-Szego problem by a variational method

    Dal'nevost. Mat. Zh., 21:2 (2021),  133–150
  4. Conformal mapping from the half-plane onto a circular polygon with cusps

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 6,  11–24
  5. A one-parametric method for determining parameters in the Schwarz–Christoffel integral

    Sibirsk. Mat. Zh., 62:4 (2021),  784–802
  6. On the search for parameters of a conformal mapping from a half-plane to a circular polygon

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 175 (2020),  56–68
  7. A one-parametric family of conformal mappings from the half-plane onto a family of polygons

    Sibirsk. Mat. Zh., 61:5 (2020),  1027–1040
  8. Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 60,  42–60
  9. On the problem of determining parameters in the Schwarz equation

    Probl. Anal. Issues Anal., 7(25):special issue (2018),  50–62
  10. On small variation formulas

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 49,  5–15
  11. Conformal mapping onto numerable polygon with double symmetry

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 12,  37–47
  12. Determination of accessory parameters for mapping onto a numerable polygon

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 2(28),  18–28
  13. Conformal mapping of half-plane onto circual numerable polygon with double symmetry

    Probl. Anal. Issues Anal., 2(20):2 (2013),  59–67
  14. Conformal mapping onto a circular polygon with double simmetry

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 6(26),  20–26
  15. A mapping to a round numerable polygon with the symmetry of transfer

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 2(22),  33–43


© Steklov Math. Inst. of RAS, 2024