RUS  ENG
Full version
PEOPLE

Kovalev Yurii Mikhailovich

Publications in Math-Net.Ru

  1. Equations of state for calculating shock wave compression temperatures of molecular crystal

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 16:2 (2024),  86–92
  2. Mathematical modelling of flame propagation in hydrogen-air mixtures

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:1 (2024),  5–16
  3. Analysis of the effect of mathematical models of chemical transformations on the ignition of hydrogen-oxygen mixtures

    J. Comp. Eng. Math., 10:2 (2023),  63–72
  4. Determining the parameters of the equation of the state of molecular crystals based on diffractometric studies

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:3 (2023),  70–78
  5. Comparative analysis of some mathematical models ignition of hydrogen-oxygen mixtures

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:2 (2023),  28–36
  6. Mathematical modelling of deformation of porous organic materials

    J. Comp. Eng. Math., 9:4 (2022),  34–43
  7. Modeling of heating of energy materials

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:2 (2022),  72–79
  8. Modeling of curved surfaces in gas dynamics problems

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:2 (2022),  59–63
  9. Equation of state for S2 glass-fiber reinforced polymer composite

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 12:3 (2020),  48–55
  10. Equation of state of TATB based on static and dynamic experiments

    Fizika Goreniya i Vzryva, 55:4 (2019),  51–59
  11. Construction of equations of the state to describe isothermal compression of some molecular crystals of nitro-compounds

    J. Comp. Eng. Math., 6:2 (2019),  18–31
  12. Modification of the large-particle method to solve shock waves and rarefaction waves propagation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  58–66
  13. Analysis of some modifications of the large-particle method to model wave dynamics problems

    J. Comp. Eng. Math., 5:3 (2018),  38–48
  14. Equilibrium mathematical model of multicomponent heterogeneous media

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:4 (2018),  49–57
  15. Determining the expression for isobaric coefficient of volume expansion for some molecular crystals of nitro compounds

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:2 (2018),  57–67
  16. The interaction of spherical shock waves with a near-surface heterogeneous layers with a chemically active gas phase

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:3 (2018),  62–71
  17. Simulation of the thermal constituent of molecular crystals state equations

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:4 (2017),  43–51
  18. Determination of the form of “elastic” component of the equations of state of molecular crystals

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:2 (2017),  55–63
  19. Analysis of some approximation for the description of thermal side of the equation states of molecular crystals

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:1 (2017),  49–56
  20. The attenuation of spherical shock waves in heterogeneous media

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017),  35–45
  21. Mathematical modelling of influence of circuit viscosity of numerical methods on a value of the impulse transferred by shock waves

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:2 (2016),  29–36
  22. The analysis of some modifications of the large-particle method on the basis of research of gas-suspension currents

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:3 (2015),  71–77
  23. Modification of method of large particles for research of currents of gas-suspensions

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:2 (2015),  36–42
  24. Detection of a type of interphase interaction force for mathematical models of gas suspension with pair interaction

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 6:3 (2014),  23–29
  25. Analysis of invariance under Galilean transformation of two-phase mathematical models of heterogeneous media

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 6:1 (2014),  30–35
  26. A Mathematical Model of Gas Suspension with Chemical Reactions in the Pair-Interaction Approximation

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:3 (2014),  40–49
  27. A Mathematical Study of the Conservation Equation for Two-Phase Mixtures

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:2 (2014),  29–37
  28. Mathematical Modelling of the Adiabatic Thermal Explosion for the Hydrogen Oxidation Reaction

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013),  130–135
  29. Mathematical Modelling of Adiabatic Induction Period for Methane-Oxygen Mixtures in a Wide Range of Initial Pressure and Temperature

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:1 (2013),  56–71
  30. Mathematical Modelling of the Thermal Component of the Equation of State of Molecular Crystals

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:1 (2013),  34–42
  31. Analysis of the invariance some mathematical models of multicomponent media

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2012, no. 6,  4–7
  32. Analysis of the Invariance Under the Galilean Transformation of Some Mathematical Models of Multicomponent Media

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 13,  69–73
  33. Пространственное осреднение в механике гетерогенных сред с малым объемным содержанием конденсированных фаз

    Vestnik Chelyabinsk. Gos. Univ., 1994, no. 2,  147–158
  34. Modeling primer cord detonation in a forest canopy without a fire

    Fizika Goreniya i Vzryva, 29:4 (1993),  115–123
  35. Shock wave intensification during interaction with a forest fire front

    Dokl. Akad. Nauk SSSR, 312:1 (1990),  50–54
  36. Experimental study of the effect of solid explosive blast on the front of crown forest fire

    Dokl. Akad. Nauk SSSR, 308:5 (1989),  1074–1078
  37. Experimental and theoretical investigation of the effect of an explosion on the front of crown forest fires

    Fizika Goreniya i Vzryva, 25:6 (1989),  72–79
  38. Equation of state and shock compression temperature of crystalline explosives

    Fizika Goreniya i Vzryva, 20:2 (1984),  102–107

  39. In memory of Valentin Kuropatenko

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 16:1 (2024),  67–70
  40. Valentin Fedorovich Kuropatenko (1933–2017)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:4 (2017),  151–152
  41. Kuropatenko Valentin Fedorovich (to the $80^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 7:1 (2014),  139–141
  42. Leonid Menikhes (to the $65^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013),  136–140
  43. Alexander Kozhanov (to the $60^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012, no. 14,  187–189
  44. Alexander Drozin (to the 60$^{th}$ anniversary)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 8,  115–120


© Steklov Math. Inst. of RAS, 2024