RUS  ENG
Full version
PEOPLE

Bolsinov Aleksei Viktorovich

Publications in Math-Net.Ru

  1. A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras

    Regul. Chaotic Dyn., 24:3 (2019),  266–280
  2. Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko–Fomenko conjecture

    Theor. Appl. Mech., 43:2 (2016),  145–168
  3. Argument shift method and sectional operators: applications to differential geometry

    Fundam. Prikl. Mat., 20:3 (2015),  5–31
  4. Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra?

    J. Geom. Phys., 87 (2015),  61–75
  5. Topology and bifurcations in nonholonomic mechanics

    Nelin. Dinam., 11:4 (2015),  735–762
  6. Geometrisation of Chaplygin's reducing multiplier theorem

    Nonlinearity, 28:7 (2015),  2307–2318
  7. Geometrization of the Chaplygin reducing-multiplier theorem

    Nelin. Dinam., 9:4 (2013),  627–640
  8. Topological monodromy in nonholonomic systems

    Nelin. Dinam., 9:2 (2013),  203–227
  9. Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals

    Nelin. Dinam., 8:3 (2012),  605–616
  10. Rolling of a Ball without Spinning on a Plane: the Absence of an Invariant Measure in a System with a Complete Set of Integrals

    Regul. Chaotic Dyn., 17:6 (2012),  571–579
  11. The Bifurcation Analysis and the Conley Index in Mechanics

    Regul. Chaotic Dyn., 17:5 (2012),  451–478
  12. Алгебраические и геометрические свойства квадратичных гамильтонианов, задаваемых секционными операторами

    Mat. Zametki, 90:5 (2011),  689–702
  13. The bifurcation analysis and the Conley index in mechanics

    Nelin. Dinam., 7:3 (2011),  649–681
  14. Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds

    Regul. Chaotic Dyn., 16:5 (2011),  443–464
  15. Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds

    Nelin. Dinam., 6:4 (2010),  829–854
  16. Topology and stability of integrable systems

    Uspekhi Mat. Nauk, 65:2(392) (2010),  71–132
  17. A Formal Frobenius Theorem and Argument Shift

    Mat. Zametki, 86:1 (2009),  3–13
  18. Compatible Poisson Brackets on Lie Algebras

    Mat. Zametki, 72:1 (2002),  11–34
  19. Integrable geodesic flows on homogeneous spaces

    Mat. Sb., 192:7 (2001),  21–40
  20. The method of loop molecules and the topology of the Kovalevskaya top

    Mat. Sb., 191:2 (2000),  3–42
  21. Integrable Geodesic Flows on the Suspensions of Toric Automorphisms

    Trudy Mat. Inst. Steklova, 231 (2000),  46–63
  22. Lie algebras in vortex dynamics and celestial mechanics — IV

    Regul. Chaotic Dyn., 4:1 (1999),  23–50
  23. On an example of an integrable geodesic flow with positive topological entropy

    Uspekhi Mat. Nauk, 54:4(328) (1999),  157–158
  24. Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry

    Mat. Sb., 189:10 (1998),  5–32
  25. On Euler Case in Rigid Body Dynamics and Jacobi Problem

    Regul. Chaotic Dyn., 2:1 (1997),  13–25
  26. Fomenko invariants in the theory of integrable Hamiltonian systems

    Uspekhi Mat. Nauk, 52:5(317) (1997),  113–132
  27. On the dimension of the space of integrable Hamiltonian systems with two degrees of freedom

    Trudy Mat. Inst. Steklova, 216 (1997),  45–69
  28. Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom

    Zap. Nauchn. Sem. POMI, 235 (1996),  54–86
  29. Exact topological classification of Hamiltonian flows on smooth two-dimensional surfaces

    Zap. Nauchn. Sem. POMI, 235 (1996),  22–53
  30. Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent to the Integrable Euler Case in Rigid Body Dynamics

    Funktsional. Anal. i Prilozhen., 29:3 (1995),  1–15
  31. Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics

    Izv. RAN. Ser. Mat., 59:1 (1995),  65–102
  32. The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body

    Uspekhi Mat. Nauk, 50:3(303) (1995),  3–32
  33. A criterion for the topological conjugacy of Hamiltonian flows on two-dimensional compact surfaces

    Uspekhi Mat. Nauk, 50:1(301) (1995),  189–190
  34. A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom

    Mat. Sb., 186:1 (1995),  3–28
  35. The geodesic flow of an ellipsoid is orbitally equivalent to the integrable Euler case in the dynamics of a rigid body

    Dokl. Akad. Nauk, 339:3 (1994),  293–296
  36. Integrable geodesic flows on the sphere, generated by Goryachev–Chaplygin and Kowalewski systems in the dynamics of a rigid body

    Mat. Zametki, 56:2 (1994),  139–142
  37. The classification of Hamiltonian systems on two-dimensional surfaces

    Uspekhi Mat. Nauk, 49:6(300) (1994),  195–196
  38. Smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom. The case of systems with planar atoms

    Uspekhi Mat. Nauk, 49:3(297) (1994),  173–174
  39. Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II

    Mat. Sb., 185:5 (1994),  27–78
  40. Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I

    Mat. Sb., 185:4 (1994),  27–80
  41. Three types bordisms of integrable systems with two degrees of freedom. Computation of bordism groups

    Trudy Mat. Inst. Steklov., 205 (1994),  32–72
  42. Unsolved problems in the theory of topological classification of integrable systems

    Trudy Mat. Inst. Steklov., 205 (1994),  18–31
  43. Trajectory classification of simple integrable Hamiltonian systems on three-dimensional surfaces of constant energy

    Dokl. Akad. Nauk, 332:5 (1993),  553–555
  44. Trajectory classification of integrable systems of Euler type in the dynamics of a rigid body

    Uspekhi Mat. Nauk, 48:5(293) (1993),  163–164
  45. Multidimensional integrable generalizations of Steklov–Lyapunov systems

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 6,  53–56
  46. Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution

    Izv. Akad. Nauk SSSR Ser. Mat., 55:1 (1991),  68–92
  47. Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity

    Uspekhi Mat. Nauk, 45:2(272) (1990),  49–77
  48. A criterion for the completeness of a family of functions in involution that is constructed by the argument translation method

    Dokl. Akad. Nauk SSSR, 301:5 (1988),  1037–1040
  49. Involutory families of functions on dual spaces of Lie algebras of type $G\underset\varphi+ V$

    Uspekhi Mat. Nauk, 42:6(258) (1987),  183–184
  50. Complete integrability of Euler's equations on the orbits of $\mathrm{Ad}^*$ of the groups $U(n)\underset\varphi{\times}\mathbf{C}^n$ and $U(n)\underset\psi{\times}\mathbf{C}^n$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 4,  79–81

  51. Iskander Asanovich Taimanov (on his 60th birthday)

    Uspekhi Mat. Nauk, 77:6(468) (2022),  209–218
  52. Chaos and integrability in $\operatorname{SL}(2,\mathbb R)$-geometry

    Uspekhi Mat. Nauk, 76:4(460) (2021),  3–36
  53. Anatolii Timofeevich Fomenko

    Chebyshevskii Sb., 21:2 (2020),  5–7
  54. Nikolaí N. Nekhoroshev

    Regul. Chaotic Dyn., 21:6 (2016),  593–598
  55. Bi-Hamiltonian structures and singularities of integrable systems

    Regul. Chaotic Dyn., 14:4-5 (2009),  431–454
  56. Nikolai Nikolaevich Nekhoroshev (obituary)

    Uspekhi Mat. Nauk, 64:3(387) (2009),  174–178


© Steklov Math. Inst. of RAS, 2024