|
|
Publications in Math-Net.Ru
-
A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras
Regul. Chaotic Dyn., 24:3 (2019), 266–280
-
Complete commutative subalgebras in polynomial Poisson algebras: a proof of the Mischenko–Fomenko conjecture
Theor. Appl. Mech., 43:2 (2016), 145–168
-
Argument shift method and sectional operators: applications to differential geometry
Fundam. Prikl. Mat., 20:3 (2015), 5–31
-
Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra?
J. Geom. Phys., 87 (2015), 61–75
-
Topology and bifurcations in nonholonomic mechanics
Nelin. Dinam., 11:4 (2015), 735–762
-
Geometrisation of Chaplygin's reducing multiplier theorem
Nonlinearity, 28:7 (2015), 2307–2318
-
Geometrization of the Chaplygin reducing-multiplier theorem
Nelin. Dinam., 9:4 (2013), 627–640
-
Topological monodromy in nonholonomic systems
Nelin. Dinam., 9:2 (2013), 203–227
-
Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals
Nelin. Dinam., 8:3 (2012), 605–616
-
Rolling of a Ball without Spinning on a Plane: the Absence of an Invariant Measure in a System with a Complete Set of Integrals
Regul. Chaotic Dyn., 17:6 (2012), 571–579
-
The Bifurcation Analysis and the Conley Index in Mechanics
Regul. Chaotic Dyn., 17:5 (2012), 451–478
-
Алгебраические и геометрические свойства квадратичных гамильтонианов, задаваемых секционными операторами
Mat. Zametki, 90:5 (2011), 689–702
-
The bifurcation analysis and the Conley index in mechanics
Nelin. Dinam., 7:3 (2011), 649–681
-
Hamiltonization of Nonholonomic Systems in the Neighborhood of Invariant Manifolds
Regul. Chaotic Dyn., 16:5 (2011), 443–464
-
Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds
Nelin. Dinam., 6:4 (2010), 829–854
-
Topology and stability of integrable systems
Uspekhi Mat. Nauk, 65:2(392) (2010), 71–132
-
A Formal Frobenius Theorem and Argument Shift
Mat. Zametki, 86:1 (2009), 3–13
-
Compatible Poisson Brackets on Lie Algebras
Mat. Zametki, 72:1 (2002), 11–34
-
Integrable geodesic flows on homogeneous spaces
Mat. Sb., 192:7 (2001), 21–40
-
The method of loop molecules and the topology of the Kovalevskaya top
Mat. Sb., 191:2 (2000), 3–42
-
Integrable Geodesic Flows on the Suspensions of Toric Automorphisms
Trudy Mat. Inst. Steklova, 231 (2000), 46–63
-
Lie algebras in vortex dynamics and celestial mechanics — IV
Regul. Chaotic Dyn., 4:1 (1999), 23–50
-
On an example of an integrable geodesic flow with positive topological entropy
Uspekhi Mat. Nauk, 54:4(328) (1999), 157–158
-
Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry
Mat. Sb., 189:10 (1998), 5–32
-
On Euler Case in Rigid Body Dynamics and Jacobi Problem
Regul. Chaotic Dyn., 2:1 (1997), 13–25
-
Fomenko invariants in the theory of integrable Hamiltonian systems
Uspekhi Mat. Nauk, 52:5(317) (1997), 113–132
-
On the dimension of the space of integrable Hamiltonian systems with two degrees of freedom
Trudy Mat. Inst. Steklova, 216 (1997), 45–69
-
Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom
Zap. Nauchn. Sem. POMI, 235 (1996), 54–86
-
Exact topological classification of Hamiltonian flows on smooth two-dimensional surfaces
Zap. Nauchn. Sem. POMI, 235 (1996), 22–53
-
Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent
to the Integrable Euler Case in Rigid Body Dynamics
Funktsional. Anal. i Prilozhen., 29:3 (1995), 1–15
-
Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics
Izv. RAN. Ser. Mat., 59:1 (1995), 65–102
-
The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body
Uspekhi Mat. Nauk, 50:3(303) (1995), 3–32
-
A criterion for the topological conjugacy of Hamiltonian flows on two-dimensional compact surfaces
Uspekhi Mat. Nauk, 50:1(301) (1995), 189–190
-
A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom
Mat. Sb., 186:1 (1995), 3–28
-
The geodesic flow of an ellipsoid is orbitally equivalent to the
integrable Euler case in the dynamics of a rigid body
Dokl. Akad. Nauk, 339:3 (1994), 293–296
-
Integrable geodesic flows on the sphere, generated by Goryachev–Chaplygin and Kowalewski systems in the dynamics of a rigid body
Mat. Zametki, 56:2 (1994), 139–142
-
The classification of Hamiltonian systems on two-dimensional surfaces
Uspekhi Mat. Nauk, 49:6(300) (1994), 195–196
-
Smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom. The case of systems with planar atoms
Uspekhi Mat. Nauk, 49:3(297) (1994), 173–174
-
Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II
Mat. Sb., 185:5 (1994), 27–78
-
Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I
Mat. Sb., 185:4 (1994), 27–80
-
Three types bordisms of integrable systems with two degrees of freedom. Computation of bordism groups
Trudy Mat. Inst. Steklov., 205 (1994), 32–72
-
Unsolved problems in the theory of topological classification of integrable systems
Trudy Mat. Inst. Steklov., 205 (1994), 18–31
-
Trajectory classification of simple integrable Hamiltonian systems
on three-dimensional surfaces of constant energy
Dokl. Akad. Nauk, 332:5 (1993), 553–555
-
Trajectory classification of integrable systems of Euler type in the dynamics of a rigid body
Uspekhi Mat. Nauk, 48:5(293) (1993), 163–164
-
Multidimensional integrable generalizations of Steklov–Lyapunov systems
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 6, 53–56
-
Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution
Izv. Akad. Nauk SSSR Ser. Mat., 55:1 (1991), 68–92
-
Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity
Uspekhi Mat. Nauk, 45:2(272) (1990), 49–77
-
A criterion for the completeness of a family of functions in
involution that is constructed by the argument translation method
Dokl. Akad. Nauk SSSR, 301:5 (1988), 1037–1040
-
Involutory families of functions on dual spaces of Lie algebras of type $G\underset\varphi+ V$
Uspekhi Mat. Nauk, 42:6(258) (1987), 183–184
-
Complete integrability of Euler's equations on the orbits of $\mathrm{Ad}^*$ of the groups $U(n)\underset\varphi{\times}\mathbf{C}^n$ and $U(n)\underset\psi{\times}\mathbf{C}^n$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 4, 79–81
-
Iskander Asanovich Taimanov (on his 60th birthday)
Uspekhi Mat. Nauk, 77:6(468) (2022), 209–218
-
Chaos and integrability in $\operatorname{SL}(2,\mathbb R)$-geometry
Uspekhi Mat. Nauk, 76:4(460) (2021), 3–36
-
Anatolii Timofeevich Fomenko
Chebyshevskii Sb., 21:2 (2020), 5–7
-
Nikolaí N. Nekhoroshev
Regul. Chaotic Dyn., 21:6 (2016), 593–598
-
Bi-Hamiltonian structures and singularities of integrable systems
Regul. Chaotic Dyn., 14:4-5 (2009), 431–454
-
Nikolai Nikolaevich Nekhoroshev (obituary)
Uspekhi Mat. Nauk, 64:3(387) (2009), 174–178
© , 2024