RUS  ENG
Full version
PEOPLE

Sadullaev Azimbay Sadullaevich

Publications in Math-Net.Ru

  1. $m-cv$ measure $\omega ^{*} (x,E,D)$ and condenser capacity $C(E,D)$ in the class $m$-convex functions

    J. Sib. Fed. Univ. Math. Phys., 18:3 (2025),  387–401
  2. Maximal functions and the Dirichlet problem in the class of $m$-convex functions

    J. Sib. Fed. Univ. Math. Phys., 17:4 (2024),  519–527
  3. Polynomial approximation on parabolic manifolds

    Mat. Sb., 215:5 (2024),  146–160
  4. Green's function on a parabolic analytic surface

    J. Sib. Fed. Univ. Math. Phys., 16:2 (2023),  253–264
  5. Holomorphic continuation of functions along a fixed direction (survey)

    CMFD, 68:1 (2022),  127–143
  6. Weierstrass polynomials in estimates of oscillatory integrals

    CMFD, 67:4 (2021),  668–692
  7. On the zeta-function of zeros of an entire function

    J. Sib. Fed. Univ. Math. Phys., 14:5 (2021),  599–603
  8. Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter

    Mat. Sb., 212:11 (2021),  109–115
  9. On the application of the Plan formula to the study of the zeta-function of zeros of entire function

    J. Sib. Fed. Univ. Math. Phys., 13:2 (2020),  135–140
  10. Continuation of analytic and pluriharmonic functions in the given direction by the Chirka method: a survey

    CMFD, 65:1 (2019),  83–94
  11. Fine-analytic functions in $\mathbb{C}^n$

    J. Sib. Fed. Univ. Math. Phys., 12:4 (2019),  444–448
  12. The class $R$ and finely analytic functions

    Mat. Sb., 209:8 (2018),  138–151
  13. On a class of $A$-analytic functions

    J. Sib. Fed. Univ. Math. Phys., 9:3 (2016),  374–383
  14. Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point

    Mat. Zametki, 96:6 (2014),  921–925
  15. Definition of the complex Monge-Ampère operator for arbitrary plurisubharmonic functions

    Eurasian Math. J., 3:1 (2012),  97–109
  16. Potential theory in the class of $m$-subharmonic functions

    Trudy Mat. Inst. Steklova, 279 (2012),  166–192
  17. Some Problems in the Theory of Analytic Multifunctions

    J. Sib. Fed. Univ. Math. Phys., 1:4 (2008),  432–434
  18. On Analytic Multifunctions

    Mat. Zametki, 83:5 (2008),  715–721
  19. Continuation of separately analytic functions defined on part of a domain boundary

    Mat. Zametki, 79:6 (2006),  931–940
  20. Continuation of separately analytic functions defined on part of the domain boundary

    Mat. Zametki, 79:2 (2006),  234–243
  21. Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections

    Trudy Mat. Inst. Steklova, 253 (2006),  158–174
  22. Pluriharmonic continuation in a fixed direction

    Mat. Sb., 196:5 (2005),  145–156
  23. Removable singularities of plurisubharmonic functions of class $\operatorname{Lip}_\alpha$

    Mat. Sb., 186:1 (1995),  131–148
  24. Smoothness of subharmonic functions

    Mat. Sb., 181:2 (1990),  167–182
  25. On continuation of functions with polar singularities

    Mat. Sb. (N.S.), 132(174):3 (1987),  383–390
  26. Plurisubharmonic functions

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 8 (1985),  65–113
  27. A criterion for rapid rational approximation in $\mathbf C^n$

    Mat. Sb. (N.S.), 125(167):2(10) (1984),  269–279
  28. Solution of the Dirichlet problem in a polydisc for the complex Monge–Ampère equation

    Dokl. Akad. Nauk SSSR, 267:3 (1982),  563–566
  29. An estimate for polynomials on analytic sets

    Izv. Akad. Nauk SSSR Ser. Mat., 46:3 (1982),  524–534
  30. Rational approximation and pluripolar sets

    Mat. Sb. (N.S.), 119(161):1(9) (1982),  96–118
  31. Plurisubharmonic measures and capacities on complex manifolds

    Uspekhi Mat. Nauk, 36:4(220) (1981),  53–105
  32. The operator $(dd^cu)^n$ and the capacity of condensers

    Dokl. Akad. Nauk SSSR, 251:1 (1980),  44–47
  33. Locally and globally $\mathscr{P}$-regular compacta in $\mathbf{C}^n$

    Dokl. Akad. Nauk SSSR, 250:6 (1980),  1324–1327
  34. Schwarz lemma for circular domains and its applications

    Mat. Zametki, 27:2 (1980),  245–253
  35. Deficient divisors in the Valiron sense

    Mat. Sb. (N.S.), 108(150):4 (1979),  567–580
  36. Inner functions in $C^n$

    Mat. Zametki, 19:1 (1976),  63–66
  37. A boundary uniqueness theorem in $\mathbf C^n$

    Mat. Sb. (N.S.), 101(143):4(12) (1976),  568–583
  38. Criteria for analytic sets to be algebraic

    Funktsional. Anal. i Prilozhen., 6:1 (1972),  85–86
  39. Fatou's example

    Mat. Zametki, 6:4 (1969),  437–441

  40. Evgenii Mikhailovich Chirka (on his 75th birthday)

    Uspekhi Mat. Nauk, 73:6(444) (2018),  204–210
  41. Inter-College Meeting on Geometric Theory of Functions of Complex Variable

    Uspekhi Mat. Nauk, 31:3(189) (1976),  259–260


© Steklov Math. Inst. of RAS, 2025