| 
	
        
	
                        
	 | 
	
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				$m-cv$ measure $\omega ^{*} (x,E,D)$ and condenser capacity $C(E,D)$ in the class $m$-convex functions
J. Sib. Fed. Univ. Math. Phys., 18:3 (2025),  387–401	 
					- 
				Maximal functions and the Dirichlet problem in the class of $m$-convex functions
J. Sib. Fed. Univ. Math. Phys., 17:4 (2024),  519–527	 
					- 
				Polynomial approximation on parabolic manifolds
Mat. Sb., 215:5 (2024),  146–160	 
					- 
				Green's function on a parabolic analytic surface
J. Sib. Fed. Univ. Math. Phys., 16:2 (2023),  253–264	 
					- 
				Holomorphic continuation of functions along a fixed direction (survey)
CMFD, 68:1 (2022),  127–143	 
					- 
				Weierstrass polynomials in estimates of oscillatory integrals
CMFD, 67:4 (2021),  668–692	 
					- 
				On the zeta-function of zeros of an entire function
J. Sib. Fed. Univ. Math. Phys., 14:5 (2021),  599–603	 
					- 
				Estimates for the volume of the zeros of a holomorphic function depending on a complex parameter
Mat. Sb., 212:11 (2021),  109–115	 
					- 
				On the application of the Plan formula to the study of the zeta-function of zeros of entire function
J. Sib. Fed. Univ. Math. Phys., 13:2 (2020),  135–140	 
					- 
				Continuation of analytic and pluriharmonic functions in the given direction by the Chirka method: a survey
CMFD, 65:1 (2019),  83–94	 
					- 
				Fine-analytic functions in $\mathbb{C}^n$
J. Sib. Fed. Univ. Math. Phys., 12:4 (2019),  444–448	 
					- 
				The class $R$ and finely analytic functions
Mat. Sb., 209:8 (2018),  138–151	 
					- 
				On a class of $A$-analytic functions
J. Sib. Fed. Univ. Math. Phys., 9:3 (2016),  374–383	 
					- 
				Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point
Mat. Zametki, 96:6 (2014),  921–925	 
					- 
				Definition of the complex Monge-Ampère operator for arbitrary plurisubharmonic functions
Eurasian Math. J., 3:1 (2012),  97–109	 
					- 
				Potential theory in the class of $m$-subharmonic functions
Trudy Mat. Inst. Steklova, 279 (2012),  166–192	 
					- 
				Some Problems  in the Theory of Analytic Multifunctions
J. Sib. Fed. Univ. Math. Phys., 1:4 (2008),  432–434	 
					- 
				On Analytic Multifunctions
Mat. Zametki, 83:5 (2008),  715–721	 
					- 
				Continuation of separately analytic functions defined on part of a domain boundary
Mat. Zametki, 79:6 (2006),  931–940	 
					- 
				Continuation of separately analytic functions defined on part of the domain boundary
Mat. Zametki, 79:2 (2006),  234–243	 
					- 
				Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
Trudy Mat. Inst. Steklova, 253 (2006),  158–174	 
					- 
				Pluriharmonic continuation in a fixed direction
Mat. Sb., 196:5 (2005),  145–156	 
					- 
				Removable singularities of plurisubharmonic functions of class $\operatorname{Lip}_\alpha$
Mat. Sb., 186:1 (1995),  131–148	 
					- 
				Smoothness of subharmonic functions
Mat. Sb., 181:2 (1990),  167–182	 
					- 
				On continuation of functions with polar singularities
Mat. Sb. (N.S.), 132(174):3 (1987),  383–390	 
					- 
				Plurisubharmonic functions
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 8 (1985),  65–113	 
					- 
				A criterion for rapid rational approximation in $\mathbf C^n$
Mat. Sb. (N.S.), 125(167):2(10) (1984),  269–279	 
					- 
				Solution of the Dirichlet problem in a polydisc for the complex Monge–Ampère equation
Dokl. Akad. Nauk SSSR, 267:3 (1982),  563–566	 
					- 
				An estimate for polynomials on analytic sets
Izv. Akad. Nauk SSSR Ser. Mat., 46:3 (1982),  524–534	 
					- 
				Rational approximation and pluripolar sets
Mat. Sb. (N.S.), 119(161):1(9) (1982),  96–118	 
					- 
				Plurisubharmonic measures and capacities on complex manifolds
Uspekhi Mat. Nauk, 36:4(220) (1981),  53–105	 
					- 
				The operator $(dd^cu)^n$ and the capacity of condensers
Dokl. Akad. Nauk SSSR, 251:1 (1980),  44–47	 
					- 
				Locally and globally $\mathscr{P}$-regular compacta in $\mathbf{C}^n$
Dokl. Akad. Nauk SSSR, 250:6 (1980),  1324–1327	 
					- 
				Schwarz lemma for circular domains and its applications
Mat. Zametki, 27:2 (1980),  245–253	 
					- 
				Deficient divisors in the Valiron sense
Mat. Sb. (N.S.), 108(150):4 (1979),  567–580	 
					- 
				Inner functions in $C^n$
Mat. Zametki, 19:1 (1976),  63–66	 
					- 
				A boundary uniqueness theorem in $\mathbf C^n$
Mat. Sb. (N.S.), 101(143):4(12) (1976),  568–583	 
					- 
				Criteria for analytic sets to be algebraic
Funktsional. Anal. i Prilozhen., 6:1 (1972),  85–86	 
					- 
				Fatou's example
Mat. Zametki, 6:4 (1969),  437–441	 
					
						- 
				Evgenii Mikhailovich Chirka (on his 75th birthday)
Uspekhi Mat. Nauk, 73:6(444) (2018),  204–210	 
					- 
				Inter-College Meeting on Geometric Theory of Functions of Complex Variable
Uspekhi Mat. Nauk, 31:3(189) (1976),  259–260	 
					
			 
				
	
	
	
	© , 2025