RUS  ENG
Full version
PEOPLE

Grasyuk Arkadii Zakhar'evich

Publications in Math-Net.Ru

  1. A simple solution to the problem of effective utilisation of the target material for pulsed laser deposition of thin films

    Kvantovaya Elektronika, 43:12 (2013),  1170–1174
  2. High-power SRS lasers – coherent summators (the way it was)

    Kvantovaya Elektronika, 42:12 (2012),  1064–1072
  3. Determination of the Raman gain coefficient in leucosapphire

    Kvantovaya Elektronika, 25:2 (1998),  170–174
  4. Increase in the temperature of a laser plasma formed by two-frequency UV — IR irradiation of metal targets

    Kvantovaya Elektronika, 25:1 (1998),  31–35
  5. Parametric Raman anti-Stokes laser

    Kvantovaya Elektronika, 17:10 (1990),  1245–1247
  6. Microwave generation in an optical breakdown plasma created by modulated laser radiation

    Kvantovaya Elektronika, 17:6 (1990),  741–744
  7. Raman parametric generation of anti-Stokes radiation under conditions of amplification of an external Stokes signal

    Kvantovaya Elektronika, 17:5 (1990),  599–602
  8. Long-pulse XeCl laser operating under active mode-locking conditions

    Kvantovaya Elektronika, 17:1 (1990),  35–39
  9. Electric-discharge XeCl laser emitting pulses of 500-ns duration

    Kvantovaya Elektronika, 16:12 (1989),  2374–2378
  10. Compression of light pulses by stimulated Raman scattering without a frequency shift

    Kvantovaya Elektronika, 16:8 (1989),  1623–1625
  11. Generation of a train of 150-ps pulses under conditions of active mode locking in a long-pulse XeCl laser

    Kvantovaya Elektronika, 16:3 (1989),  411–414
  12. Raman laser utilizing rotational levels of hydrogen with a ring resonator

    Kvantovaya Elektronika, 15:10 (1988),  2042–2044
  13. DYNAMICS OF THE CHARGED TARGET POTENTIAL CHANGE DURING THE LASER PLASMA EFFECT

    Zhurnal Tekhnicheskoi Fiziki, 56:5 (1986),  873–877
  14. INFLUENCE OF THE LASER-EMISSION WAVELENGTH ON THE CHANGE IN DISCHARGE TARGET POTENTIAL

    Zhurnal Tekhnicheskoi Fiziki, 56:4 (1986),  780–782
  15. 15NH3 laser with two-photon optical pumping

    Kvantovaya Elektronika, 13:8 (1986),  1555–1559
  16. Ammonia laser pumped transversely by optical radiation

    Kvantovaya Elektronika, 13:4 (1986),  693–697
  17. Continuously tunable Raman NH3 laser pumped by the 9R(16) CO2 laser line

    Kvantovaya Elektronika, 12:7 (1985),  1414–1419
  18. Generation of single picosecond pulses of up to 0.6 mJ energy and of 9.2 μ wavelength by stimulated Raman scattering

    Kvantovaya Elektronika, 11:9 (1984),  1872–1874
  19. Middle-infrared laser utilizing isotopicaily substituted 15NH3 ammonia molecules

    Kvantovaya Elektronika, 11:4 (1984),  845–846
  20. Continuous tuning of the frequency of an NH3 laser within the gain profile

    Kvantovaya Elektronika, 10:3 (1983),  602–607
  21. Dissociation of UF6 molecules involving excitation of combination modes by NH3–N2 laser radiation

    Kvantovaya Elektronika, 10:2 (1983),  346–353
  22. High-power continuously tunable atmospheric-pressure CO$_2$ laser operating in the superregenerative amplification regime

    Kvantovaya Elektronika, 9:11 (1982),  2348–2350
  23. High-pressure NH3–N2 laser

    Kvantovaya Elektronika, 9:10 (1982),  2044–2049
  24. Characteristics of a high-power NH$_3$–N$_2$ laser with passive longitudinal mode locking

    Kvantovaya Elektronika, 9:4 (1982),  655–660
  25. Determination of the rotational relaxation time of compressed hydrogen

    Kvantovaya Elektronika, 9:1 (1982),  174–176
  26. Interaction of a laser-breakdown plasma with a charged metallic target

    Kvantovaya Elektronika, 8:11 (1981),  2390–2396
  27. Regenerative Raman amplifier utilizing rotational transitions in orthohydrogen

    Kvantovaya Elektronika, 8:8 (1981),  1715–1720
  28. Investigation of the temperature characteristics of an ammonia laser

    Kvantovaya Elektronika, 8:6 (1981),  1229–1234
  29. Hydrogen Raman laser based on rotational transitions with longitudinal nonaxial pumping by $Nd$ laser radiation

    Kvantovaya Elektronika, 7:12 (1980),  2637–2639
  30. Molecular infrared lasers using resonant laser pumping (review)

    Kvantovaya Elektronika, 7:11 (1980),  2261–2298
  31. High-power efficient optically pumped NH<sub>3</sub> laser, tunable over the range 770–890 cm <sup>–1</sup>

    Kvantovaya Elektronika, 7:1 (1980),  116–122
  32. Dissociation of uranium hexafluoride by laser radiation

    Kvantovaya Elektronika, 6:12 (1979),  2612–2613
  33. Hydrogen Raman laser for efficient coherent summation of nanosecond optical pulses

    Kvantovaya Elektronika, 6:6 (1979),  1329–1331
  34. Ammonia laser with a raster and light-guide pump system

    Kvantovaya Elektronika, 6:3 (1979),  648–651
  35. Influence of the degree of polarization on the gain in stimulated Raman scattering

    Kvantovaya Elektronika, 5:12 (1978),  2633–2635
  36. Isotopically selective dissociation of CCl4 molecules by highpower NH3 laser radiation

    Kvantovaya Elektronika, 5:8 (1978),  1791–1795
  37. Pulse-periodic operation of an optically pumped CF4 laser with an average output power of 0.2 W

    Kvantovaya Elektronika, 5:4 (1978),  940–943
  38. High-power pulse NH3 laser pumped optically by CO2 laser radiation

    Kvantovaya Elektronika, 4:8 (1977),  1805–1807
  39. Determination of the gain in stimulated Raman scattering under spatially inhomogeneous pumping conditions

    Kvantovaya Elektronika, 3:11 (1976),  2494–2496
  40. Use of a tunable compressed-hydrogen Raman laser in isotope separation

    Kvantovaya Elektronika, 3:9 (1976),  2059–2061
  41. High-power tunable infrared Raman lasers and their applications

    Kvantovaya Elektronika, 3:8 (1976),  1853–1854
  42. Tunable compressed hydrogen infrared Raman laser

    Kvantovaya Elektronika, 3:5 (1976),  1062–1067
  43. Spectrum of two-photon interband absorption of laser radiation in semiconducting GaAs

    Kvantovaya Elektronika, 2:8 (1975),  1826–1828
  44. Many-pulse infrared Raman laser

    Kvantovaya Elektronika, 1:10 (1974),  2185–2191
  45. Raman lasers (review)

    Kvantovaya Elektronika, 1:3 (1974),  485–509
  46. Dynamics of the emission and amplification of light in stimulated Raman scattering

    Kvantovaya Elektronika, 1973, no. 5(17),  27–35
  47. Stimulated thermal and Mandelstam–Brillouin scattering of light in liquid nitrogen and oxygen

    Kvantovaya Elektronika, 1971, no. 6,  118–122
  48. Enhancement of emission intensity by the use of a brillouin laser

    Kvantovaya Elektronika, 1971, no. 1,  70–78
  49. Induced radiation in gallium arsenide when optically excited

    Dokl. Akad. Nauk SSSR, 161:6 (1965),  1306–1307
  50. Regenerative optical quantum amplifier

    Dokl. Akad. Nauk SSSR, 157:5 (1964),  1084–1087
  51. Optical location of the Moon

    Dokl. Akad. Nauk SSSR, 154:6 (1964),  1303–1305

  52. In memory of Mitrofan Fedorovich Stel'makh

    Kvantovaya Elektronika, 48:12 (2018),  1179
  53. In Memory of Gennadii Alekseevich Kirillov (25 July 1933 – 22 September 2013)

    Kvantovaya Elektronika, 43:10 (2013),  988
  54. N. G. Basov – one of the greatest scientists of the 20th century

    Kvantovaya Elektronika, 42:12 (2012),  1054–1063
  55. A few words about the book

    Kvantovaya Elektronika, 41:9 (2011),  862
  56. Vladilen Stepanovich Letokhov (10.10.1939 г. — 21.03.2009 г.)

    Kvantovaya Elektronika, 39:4 (2009),  392
  57. In Memory of Nikolai Gennadievich Basov

    Kvantovaya Elektronika, 31:8 (2001),  751
  58. Sergeĭ Aleksandrovich Akhmanov

    Kvantovaya Elektronika, 18:10 (1991),  1149
  59. Raman light scattering today (International Conference on Modern Raman Spectroscopy, December 7–11, 1987, Kanpur, India)

    Kvantovaya Elektronika, 15:11 (1988),  2391–2399
  60. Lasers on the eve of 1986: Report on International Laser Science (Dallas, November 18–22,1985) and Lasers-85 (Las Vegas, December 2–6,1985) Conferences

    Kvantovaya Elektronika, 14:3 (1987),  637–653
  61. Vitaliĭ Sergeevich Zuev (on his fiftieth birthday)

    Kvantovaya Elektronika, 10:7 (1983),  1520
  62. Fifth International Conference on Laser Spectroscopy (Jasper Park Lodge, Canada, June 29–July 3, 1981)

    Kvantovaya Elektronika, 10:1 (1983),  190–197
  63. Nikolaĭ Gennadievich Basov (on his sixtieth birthday)

    Kvantovaya Elektronika, 9:12 (1982),  2547–2549
  64. Tunable lasers and applications (Proc. Loen Conf., Norway, 1976)

    Kvantovaya Elektronika, 4:10 (1977),  2283–2293
  65. Новейшие применения перестраиваемых лазеров

    UFN, 123:1 (1977),  141–145


© Steklov Math. Inst. of RAS, 2024