RUS  ENG
Full version
PEOPLE

Il'ichev Nikolai Nikolaevich

Publications in Math-Net.Ru

  1. Peculiarities of concentration quenching of Fe2+ luminescence in ZnSe single crystal

    Kvantovaya Elektronika, 53:5 (2023),  395–400
  2. Study of spatial distribution of luminescence in the wavelength range of 0.44–0.75 $\mu$m in CVD-ZnSe doped with aluminum and iron

    Fizika i Tekhnika Poluprovodnikov, 55:5 (2021),  410–419
  3. Effect of annealing in gaseous zinc on luminescence in the visible and middle IR ranges of ZnSe : Fe$^{2+}$

    Optics and Spectroscopy, 128:11 (2020),  1710–1716
  4. Study of the luminescence power of excitons and impurity–defect centers excited via two-photon absorption

    Fizika i Tekhnika Poluprovodnikov, 54:1 (2020),  48–54
  5. Kinetics of the luminescence decay of Fe2+ impurity centres in polycrystalline ZnSe upon excitation by an electron beam

    Kvantovaya Elektronika, 50:8 (2020),  730–733
  6. Study of the effect of doping with iron on the luminescence of zinc-selenide single crystals

    Fizika i Tekhnika Poluprovodnikov, 53:1 (2019),  5–12
  7. Free-electron Auger quenching of the Fe2+ excited state in ZnSe

    Kvantovaya Elektronika, 49:12 (2019),  1175–1177
  8. Acoustic signal investigation in the ice melting under high-power laser irradiation at a wavelength of 2940 nm

    Kvantovaya Elektronika, 48:6 (2018),  516–520
  9. Room- and low-temperature transmission of diffusion-doped Fe2+ : ZnSe polycrystal at 2940 nm

    Kvantovaya Elektronika, 47:2 (2017),  111–115
  10. Measuring nonlinear reflectance of laser radiation with a wavelength of 2940 nm from silica glass – water and silica glass – ethanol interfaces

    Kvantovaya Elektronika, 46:7 (2016),  606–608
  11. IR luminescence of F2+ : ZnSe single crystals excited by an electron beam

    Kvantovaya Elektronika, 46:6 (2016),  545–547
  12. Absorption spectra and nonlinear transmission (at $\lambda=2940$ nm) of a diffusion-doped Fe$^{2+}$:ZnSe single crystal

    Kvantovaya Elektronika, 45:6 (2015),  521–526
  13. High-power compact laser with segmented longitudinal pumping of coupled laser channels

    Kvantovaya Elektronika, 45:6 (2015),  508–510
  14. Linear and nonlinear transmission of Fe2+-doped ZnSe crystals at a wavelength of 2940 nm in the temperature range 20–220 °C

    Kvantovaya Elektronika, 44:3 (2014),  213–216
  15. Fe2+ : ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature

    Kvantovaya Elektronika, 44:2 (2014),  141–144
  16. Spatial separation and motion of electric charges arising due to the interaction of high-power IR laser radiation with water

    Kvantovaya Elektronika, 43:1 (2013),  47–54
  17. On photoacoustic monitoring of laser evaporation front movement

    Kvantovaya Elektronika, 40:8 (2010),  659–660
  18. Superluminescent room-temperature Fe2+:ZnSe IR radiation source

    Kvantovaya Elektronika, 38:2 (2008),  95–96
  19. Features of the explosive boiling up of water irradiated by a Q-switched erbium laser

    Kvantovaya Elektronika, 37:12 (2007),  1141–1142
  20. Passive Q-switching of an erbium-doped glass laser by using a Co2+ : ZnSe crystal

    Kvantovaya Elektronika, 37:10 (2007),  974–980
  21. On the role of thermal nonlinearity in degenerate interactions in saturated laser media

    Kvantovaya Elektronika, 37:9 (2007),  821–826
  22. Photovoltaic effect in water induced by a 2.92-μm Cr3+:Yb3+:Ho3+: YSGG laser

    Kvantovaya Elektronika, 35:10 (2005),  959–961
  23. Study of the phase component of an inverse population grating in a flashlamp-pumped Nd:YAlO3 crystal

    Kvantovaya Elektronika, 35:10 (2005),  938–942
  24. Study of the nonlinear transmission of Co2+:ZnSe crystals at a wavelength of 1.54 μm

    Kvantovaya Elektronika, 34:12 (2004),  1169–1172
  25. Self-mode locking in a F2-:LiF laser by means of a passive switch based on single-wall carbon nanotubes

    Kvantovaya Elektronika, 34:9 (2004),  785–786
  26. Nonlinear transmission of single-wall carbon nanotubesin heavy water at a wavelength of 1.54 μm and self-mode locking in a Er3+ : glass laser obtained using a passive nanotube switch

    Kvantovaya Elektronika, 34:6 (2004),  572–574
  27. Use of the Talbot effect for measuring the phase-to-amplitude ratio for a gain grating induced in a flashlamp-pumped Nd : YAG crystal

    Kvantovaya Elektronika, 34:3 (2004),  283–288
  28. Estimation of the saturation energy density in a 2.92-μm Q-switched single-frequency Cr3+:Yb3+:Ho3+:YSGG laser

    Kvantovaya Elektronika, 33:4 (2003),  312–314
  29. A study of resistance of absorbing centres in a Pr2+:CaF2 crystal to high-power laser radiation

    Kvantovaya Elektronika, 31:7 (2001),  597–598
  30. Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser

    Kvantovaya Elektronika, 31:4 (2001),  303–304
  31. Continuously pumped Nd3+:YAG laser operating on two locked frequencies

    Kvantovaya Elektronika, 30:9 (2000),  806–808
  32. Reflection coefficient of a stimulated Brillouin scattering mirror

    Kvantovaya Elektronika, 28:3 (1999),  256–258
  33. Model of passive $Q$ switching taking account of the anisotropy of nonlinear absorption in a crystal switch with phototropic centres

    Kvantovaya Elektronika, 25:2 (1998),  155–159
  34. Polarisation of a neodymium laser with a passive switch based on a Cr4+:YAG crystal

    Kvantovaya Elektronika, 25:1 (1998),  19–22
  35. Passive Q switching of a neodymium laser by a Cr4+:YAG crystal switch

    Kvantovaya Elektronika, 24:11 (1997),  1001–1006
  36. Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarisation characteristics of a neodymium laser

    Kvantovaya Elektronika, 24:4 (1997),  307–310
  37. Dichroism of an LiF crystal under conditions of irreversible spatially selective bleaching of $F^-_2$ colour centres by $\lambda \sim$ 1.06 $\mu$m radiation

    Kvantovaya Elektronika, 23:3 (1996),  269–272
  38. Polarisation characteristics of two-photon absorption in an LiF:$F^-_2$ crystal at the 1.06 $\mu$m wavelength

    Kvantovaya Elektronika, 23:2 (1996),  149–153
  39. Anisotropy of nonlinear absorption in a V3+ : YAG crystal

    Kvantovaya Elektronika, 22:12 (1995),  1192–1194
  40. Experimental investigation of the coupling between fluctuations in the radiation energy at the fundamental and second-harmonic frequencies of a single-frequency passively Q-switched neodymium laser

    Kvantovaya Elektronika, 21:9 (1994),  835–837
  41. Changes in the profile and state of polarisation of a short light pulse (λ ~ 1.06 μm) during propagation in a YAG : Cr4+ crystal

    Kvantovaya Elektronika, 21:9 (1994),  829–834
  42. Phenomenological model of the 'polarisation collapse' of the radiation emitted by a neodymium glass laser with a passive LiF : $F_2^-$ switch

    Kvantovaya Elektronika, 21:7 (1994),  629–632
  43. 'Polarisation collapse' of the radiation emitted by a neodymium glass laser with a passive LiF : $F_2^-$ crystal switch

    Kvantovaya Elektronika, 21:7 (1994),  622–628
  44. Single-frequency stable neodymium glass laser with a longitudinal mode selector based on an LiF:F2 crystal

    Kvantovaya Elektronika, 19:6 (1992),  589–592
  45. Approximate theory of multipass amplification and its application in analytic description of spectral characteristics of amplified radiation

    Kvantovaya Elektronika, 18:11 (1991),  1386–1390
  46. Lasing tests on new neodymium laser glasses

    Kvantovaya Elektronika, 18:11 (1991),  1303–1305
  47. Self-induced change in the polarization of high-power resonant radiation in an LiF:F2 crystal

    Kvantovaya Elektronika, 18:8 (1991),  933–937
  48. Stability of the output energy of pulsed solid-state lasers passively Q-switched using LiF crystals containing [IMG align=ABSMIDDLE alt=$F^-_2$]f2-i[/IMG] color centers

    Kvantovaya Elektronika, 18:6 (1991),  689–692
  49. Spontaneous narrowing of the emission spectrum (spectral "collapse") in neodymium lasers with Q switching by LiF:F2 crystals

    Kvantovaya Elektronika, 18:4 (1991),  433–436
  50. Passive Q switching of a 1.3-μm laser resonator using a stimulated Brillouin scattering mirror

    Kvantovaya Elektronika, 17:11 (1990),  1475–1476
  51. Approximate theory of multipass amplification and its application to energy characteristics of an amplifier

    Kvantovaya Elektronika, 17:11 (1990),  1428–1433
  52. Measurements of the relative values of the stimulated emission cross sections of media containing neodymium ions

    Kvantovaya Elektronika, 17:7 (1990),  883–885
  53. High-power pulse-periodic neodymium glass laser with a plate-shaped active element

    Kvantovaya Elektronika, 17:4 (1990),  398–403
  54. Determination of heat evolution in active elements of optically pumped solid-state lasers made of CNPG and GLS24 glasses, and also YAG:Nd

    Kvantovaya Elektronika, 15:12 (1988),  2508–2510
  55. Active mode locking in a solid-state (concentrated neodymium phosphate glass) laser by a modulator with regular domain structures

    Kvantovaya Elektronika, 15:10 (1988),  2010–2012
  56. Compact GSGG:Cr3+:Nd3+ laser with passive Q switching

    Kvantovaya Elektronika, 14:5 (1987),  905–906
  57. Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium

    Kvantovaya Elektronika, 13:5 (1986),  973–979
  58. Influence of temperature of LiF(F2) on single-pulse operation of a neodymium glass laser

    Kvantovaya Elektronika, 12:8 (1985),  1721–1724
  59. Comparative tests of lasing characteristics on certain brands of neodymium laser glasses

    Kvantovaya Elektronika, 12:4 (1985),  694–697
  60. Control of the parameters of a laser with a switch in a compound resonator

    Kvantovaya Elektronika, 12:2 (1985),  446–448
  61. Optimization of the parameters of active elements of miniature lasers utilizing concentrated Li–Nd–La phosphate glass

    Kvantovaya Elektronika, 11:8 (1984),  1671–1674
  62. Tunable laser utilizing an electronic–vibrational transition in chromium in a gadolinium scandium gallium garnet crystal

    Kvantovaya Elektronika, 10:9 (1983),  1916–1919
  63. Method for altering the Q factor of a laser by a glass plate

    Kvantovaya Elektronika, 10:2 (1983),  454–455
  64. Spectral, luminescence, and lasing properties of gadolinium scandium gallium garnet crystals activated with neodymium and chromium ions

    Kvantovaya Elektronika, 10:1 (1983),  140–144
  65. Spectral composition of the radiation emitted from a concentrated LiNdLa phosphate glass laser with a $Q$ switch made of an LiF crystal with $F_2^-$ centers

    Kvantovaya Elektronika, 9:9 (1982),  1842–1843
  66. Generation of 3-psec pulses in a laser with concentrated neodymium phosphate glass

    Kvantovaya Elektronika, 9:9 (1982),  1840–1842
  67. Laser with diffraction-limited divergence and Q switching by stimulated Brillouin scattering

    Kvantovaya Elektronika, 9:9 (1982),  1803–1808
  68. Nanosecond neodymium phosphate glass laser pumped by laser radiation

    Kvantovaya Elektronika, 9:8 (1982),  1733–1735
  69. Passively Q-switched laser utilizing concentrated Li–Nd–La phosphate glass

    Kvantovaya Elektronika, 9:8 (1982),  1536–1542
  70. Sensitization of neodymium ion luminescence by chromium ions in a Gd3Ga5O12 crystal

    Kvantovaya Elektronika, 9:3 (1982),  568–573
  71. Efficiency of an Li–Nd–La phosphate glass laser at low pump energies. Free lasing

    Kvantovaya Elektronika, 8:7 (1981),  1598–1601
  72. Use of high-concentration Li–Nd–La phosphate glass in Q-switched lasers

    Kvantovaya Elektronika, 8:7 (1981),  1595–1598
  73. High-efficiency pulse-periodic laser utilizing highconcentration neodymium phosphate glass

    Kvantovaya Elektronika, 7:5 (1980),  1120–1122
  74. Enhancement of the efficiency of neodymium lasers by conversion of the pump radiation in a luminescent liquid

    Kvantovaya Elektronika, 6:8 (1979),  1795–1798

  75. In memory of Vyacheslav Petrovich Makarov (14 February 1938 – 6 August 2019)

    Kvantovaya Elektronika, 49:9 (2019),  894
  76. Errata to the article: Estimation of the saturation energy density in a 2.92-μm Q-switched single-frequency Cr3+:Yb3+:Ho3+:YSGG laser

    Kvantovaya Elektronika, 33:6 (2003),  541


© Steklov Math. Inst. of RAS, 2024