|   |  | 
	
	
	
 
	
  
	
	
        
	  
			Publications in Math-Net.Ru
			
				- 
				Optimisation of the efficiency of tapered erbium-doped optical fibre
 
 Kvantovaya Elektronika, 51:12 (2021),  1056–1060
- 
				Optical fibre with an offset core for SBS suppression
 
 Kvantovaya Elektronika, 51:3 (2021),  228–231
- 
				Spectrally selective fundamental core mode suppression in optical fibre containing absorbing rods
 
 Kvantovaya Elektronika, 50:12 (2020),  1083–1087
- 
				Tapered erbium-doped fibre laser system delivering 10 MW of peak power
 
 Kvantovaya Elektronika, 49:12 (2019),  1093–1099
- 
				All-fibre single-mode small-signal amplifier operating near 0.976 μm
 
 Kvantovaya Elektronika, 49:10 (2019),  919–924
- 
				Use of rare-earth elements to achieve wavelength-selective absorption in high-power fibre lasers
 
 Kvantovaya Elektronika, 48:8 (2018),  733–737
- 
				Factors reducing the efficiency of ytterbium fibre lasers and amplifiers operating near 0.98 μm
 
 Kvantovaya Elektronika, 47:12 (2017),  1109–1114
- 
				Optical properties of heavily ytterbium- and fluorine-doped aluminosilicate core fibres
 
 Kvantovaya Elektronika, 47:12 (2017),  1099–1104
- 
				Stabilisation of a radiation wavelength of a nanosecond fibre laser by a passive nonlinear loop mirror
 
 Kvantovaya Elektronika, 46:12 (2016),  1089–1091
- 
				Quasi-single-mode hybrid fibre with anomalous dispersion in the 1 μm range
 
 Kvantovaya Elektronika, 46:8 (2016),  738–742
- 
				Optimisation of an acoustically antiguiding structure for raising the stimulated Brillouin scattering threshold in optical fibres
 
 Kvantovaya Elektronika, 46:5 (2016),  468–472
- 
				Effect of temperature on the active properties of erbium-doped optical fibres
 
 Kvantovaya Elektronika, 46:3 (2016),  271–276
- 
				Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses
 
 Kvantovaya Elektronika, 45:5 (2015),  443–450
- 
				Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres
 
 Kvantovaya Elektronika, 44:12 (2014),  1129–1135
- 
				Influence of pump wavelength and core size on stimulated Brillouin scattering spectra of acoustically antiguiding optical fibres
 
 Kvantovaya Elektronika, 44:11 (2014),  1043–1047
- 
				Submicrojoule femtosecond erbium-doped fibre laser for the generation of dispersive waves at submicron wavelengths
 
 Kvantovaya Elektronika, 44:5 (2014),  458–464
- 
				Role of oxygen hole centres in the photodarkening of ytterbium-doped phosphosilicate fibre
 
 Kvantovaya Elektronika, 43:11 (2013),  1037–1042
- 
				All-fibre high-energy chirped-pulse laser in the 1 μm range
 
 Kvantovaya Elektronika, 43:3 (2013),  252–255
- 
				High-performace cladding-pumped erbium-doped fibre laser and amplifier
 
 Kvantovaya Elektronika, 42:5 (2012),  432–436
- 
				Luminescence and photoinduced absorption in ytterbium-doped optical fibres
 
 Kvantovaya Elektronika, 41:12 (2011),  1073–1079
- 
				Angular distribution of light scattered from heavily doped silica fibres
 
 Kvantovaya Elektronika, 41:10 (2011),  917–923
- 
				Experimental and theoretical study of optical losses in straight and bent Bragg fibres
 
 Kvantovaya Elektronika, 40:10 (2010),  893–898
- 
				Erbium-doped aluminophosphosilicate optical fibres
 
 Kvantovaya Elektronika, 40:7 (2010),  633–638
- 
				Optical properties of fibres with aluminophosphosilicate glass cores
 
 Kvantovaya Elektronika, 39:9 (2009),  857–862
- 
				Radiation-resistant erbium-doped silica fibre
 
 Kvantovaya Elektronika, 37:10 (2007),  946–949
- 
				Development and study of Bragg fibres with a large mode field and low optical losses
 
 Kvantovaya Elektronika, 36:7 (2006),  581–586
- 
				Study of the radiation scattering indicatrix in fibres heavily doped with germanium oxide
 
 Kvantovaya Elektronika, 36:5 (2006),  464–469
- 
				Pump radiation distribution in multi-element first cladding laser fibres
 
 Kvantovaya Elektronika, 35:11 (2005),  996–1002
- 
				Efficient source of femtosecond pulses and its use for broadband supercontinuum generation
 
 Kvantovaya Elektronika, 35:7 (2005),  581–585
- 
				Amplifying properties of heavily erbium-doped active fibres
 
 Kvantovaya Elektronika, 35:6 (2005),  559–562
- 
				Yb-, Er–Yb-, and Nd-doped fibre lasers based on multi-element first cladding fibres
 
 Kvantovaya Elektronika, 35:4 (2005),  328–334
- 
				Optical losses in single-mode and multimode fibres heavily doped with GeO2 and P2O5
 
 Kvantovaya Elektronika, 34:3 (2004),  241–246
- 
				Mechanisms of optical losses in fibres with a high concentration of germanium dioxide
 
 Kvantovaya Elektronika, 33:7 (2003),  633–638
- 
				Peculiarities of the photosensitivity of low-loss phosphosilica fibres
 
 Kvantovaya Elektronika, 32:2 (2002),  124–128
- 
				Single-mode fibre with an additional ring fibre for two-channel communication and special applications
 
 Kvantovaya Elektronika, 31:8 (2001),  733–739
- 
				High-power fibre Raman lasers emitting in the 1.22 — 1.34-μm range
 
 Kvantovaya Elektronika, 30:9 (2000),  791–793
- 
				Continuous-wave highly efficient phosphosilicate fibre-based Raman laser (λ = 1.24 μm)
 
 Kvantovaya Elektronika, 29:2 (1999),  97–100
- 
				Large-aperture low-loss fibre-optic Raman amplifier of 1.3 μm signals with 30 dB gain
 
 Kvantovaya Elektronika, 22:7 (1995),  643–644
- 
				Raman fibre-optic amplifier of signals at the wavelength of 1.3 μm
 
 Kvantovaya Elektronika, 21:9 (1994),  807–809
- 
				New method for fabrication of fiber waveguides doped with rare-earth elements
 
 Kvantovaya Elektronika, 17:7 (1990),  813–814
- 
				Propagation of high-intensity excimer laser radiation through a quartz fiber waveguide
 
 Kvantovaya Elektronika, 15:5 (1988),  1067–1074
- 
				Frost-resistant fiber-optic cable
 
 Kvantovaya Elektronika, 15:1 (1988),  232–235
- 
				Frost-resistant fiber optic modules
 
 Kvantovaya Elektronika, 12:9 (1985),  1951–1954
- 
				Influence of primary polymer coatings on low-temperature optical losses in fiber waveguides
 
 Kvantovaya Elektronika, 12:4 (1985),  839–841
- 
				Methods for predicting the service life of fiber waveguides
 
 Kvantovaya Elektronika, 11:11 (1984),  2370–2372
- 
				Increase in the strength of welded fiber waveguide joints
 
 Kvantovaya Elektronika, 11:9 (1984),  1879–1880
- 
				Influence of water on the mechanical strength of fiber waveguides
 
 Kvantovaya Elektronika, 11:7 (1984),  1467–1469
- 
				High-strength fiber waveguides made by chemical vapor deposition method
 
 Kvantovaya Elektronika, 9:7 (1982),  1506–1509
- 
				Influence of γ irradiation on the temperature dependence of the optical losses in quartz glass–polymer fiber waveguides
 
 Kvantovaya Elektronika, 8:8 (1981),  1816–1817
- 
				Investigation of the mechanical strength of fiber-optic waveguides used in optical communications systems
 
 Kvantovaya Elektronika, 8:4 (1981),  844–852
- 
				Three-layer optical waveguides of the ring type
 
 Kvantovaya Elektronika, 8:2 (1981),  347–350
- 
				Glass fiber waveguide made of anhydrous quartz glass with a reflecting silicone-rubber cladding
 
 Kvantovaya Elektronika, 8:1 (1981),  176–178
- 
				Selection of the parameters of a single-mode waveguide to ensure minimal dispersion in the region of $1,55\mu m$
 
 Kvantovaya Elektronika, 7:12 (1980),  2656–2658
- 
				Frost-resistant fiber waveguides with a quartz glass core and a silicone rubber cladding
 
 Kvantovaya Elektronika, 7:10 (1980),  2207–2210
- 
				Investigation of the dependence of the pass band of a multimode fiber waveguide on the excitation conditions
 
 Kvantovaya Elektronika, 6:8 (1979),  1767–1770
- 
				Optical fiber waveguides with a large-diameter core and low optical losses
 
 Kvantovaya Elektronika, 6:5 (1979),  1084–1085
- 
				Drawing of glass-fiber waveguides using CO2 lasers
 
 Kvantovaya Elektronika, 5:9 (1978),  2064–2065
- 
				Low-loss fiber-optical cable
 
 Kvantovaya Elektronika, 5:3 (1978),  700–703
- 
				Deformation of the resonator of a neodymium glass laser due to a change in the polarizability of excited neodymium ions
 
 Kvantovaya Elektronika, 5:2 (1978),  464–468
- 
				Investigation of optical-fiber systems for communication between computer units
 
 Kvantovaya Elektronika, 4:11 (1977),  2456–2459
- 
				Determination of the temperature dependence of the linear expansion coefficient and of the temperature coefficient of the refractive index of laser glasses
 
 Kvantovaya Elektronika, 3:5 (1976),  1151–1153
- 
				Low-loss glass-fiber waveguides
 
 Kvantovaya Elektronika, 2:9 (1975),  2103–2105
- 
				Enhancement of the brightness of the output of neodymium-glass lasers by selection of the composition of the active-element matrix
 
 Kvantovaya Elektronika, 1973, no. 4(16),  113–115
- 
				The change of sign of glass laser rod thermal lens when the thermal optical constant of glass is changed
 
 Dokl. Akad. Nauk SSSR, 205:3 (1972),  556–559
						- 
				In memory of Vyacheslav Vasil'evich Osiko
 
 Kvantovaya Elektronika, 50:1 (2020),  94
- 
				Evgeny Mikhailovich Dianov (on his 80th birthday)
 
 UFN, 186:1 (2016),  111–112
 
				
	
	
	
	© , 2025