RUS  ENG
Full version
PEOPLE

Bubnov Mikhail Mikhailovich

Publications in Math-Net.Ru

  1. Optimisation of the efficiency of tapered erbium-doped optical fibre

    Kvantovaya Elektronika, 51:12 (2021),  1056–1060
  2. Optical fibre with an offset core for SBS suppression

    Kvantovaya Elektronika, 51:3 (2021),  228–231
  3. Spectrally selective fundamental core mode suppression in optical fibre containing absorbing rods

    Kvantovaya Elektronika, 50:12 (2020),  1083–1087
  4. Tapered erbium-doped fibre laser system delivering 10 MW of peak power

    Kvantovaya Elektronika, 49:12 (2019),  1093–1099
  5. All-fibre single-mode small-signal amplifier operating near 0.976 μm

    Kvantovaya Elektronika, 49:10 (2019),  919–924
  6. Use of rare-earth elements to achieve wavelength-selective absorption in high-power fibre lasers

    Kvantovaya Elektronika, 48:8 (2018),  733–737
  7. Factors reducing the efficiency of ytterbium fibre lasers and amplifiers operating near 0.98 μm

    Kvantovaya Elektronika, 47:12 (2017),  1109–1114
  8. Optical properties of heavily ytterbium- and fluorine-doped aluminosilicate core fibres

    Kvantovaya Elektronika, 47:12 (2017),  1099–1104
  9. Stabilisation of a radiation wavelength of a nanosecond fibre laser by a passive nonlinear loop mirror

    Kvantovaya Elektronika, 46:12 (2016),  1089–1091
  10. Quasi-single-mode hybrid fibre with anomalous dispersion in the 1 μm range

    Kvantovaya Elektronika, 46:8 (2016),  738–742
  11. Optimisation of an acoustically antiguiding structure for raising the stimulated Brillouin scattering threshold in optical fibres

    Kvantovaya Elektronika, 46:5 (2016),  468–472
  12. Effect of temperature on the active properties of erbium-doped optical fibres

    Kvantovaya Elektronika, 46:3 (2016),  271–276
  13. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    Kvantovaya Elektronika, 45:5 (2015),  443–450
  14. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Kvantovaya Elektronika, 44:12 (2014),  1129–1135
  15. Influence of pump wavelength and core size on stimulated Brillouin scattering spectra of acoustically antiguiding optical fibres

    Kvantovaya Elektronika, 44:11 (2014),  1043–1047
  16. Submicrojoule femtosecond erbium-doped fibre laser for the generation of dispersive waves at submicron wavelengths

    Kvantovaya Elektronika, 44:5 (2014),  458–464
  17. Role of oxygen hole centres in the photodarkening of ytterbium-doped phosphosilicate fibre

    Kvantovaya Elektronika, 43:11 (2013),  1037–1042
  18. All-fibre high-energy chirped-pulse laser in the 1 μm range

    Kvantovaya Elektronika, 43:3 (2013),  252–255
  19. High-performace cladding-pumped erbium-doped fibre laser and amplifier

    Kvantovaya Elektronika, 42:5 (2012),  432–436
  20. Luminescence and photoinduced absorption in ytterbium-doped optical fibres

    Kvantovaya Elektronika, 41:12 (2011),  1073–1079
  21. Angular distribution of light scattered from heavily doped silica fibres

    Kvantovaya Elektronika, 41:10 (2011),  917–923
  22. Experimental and theoretical study of optical losses in straight and bent Bragg fibres

    Kvantovaya Elektronika, 40:10 (2010),  893–898
  23. Erbium-doped aluminophosphosilicate optical fibres

    Kvantovaya Elektronika, 40:7 (2010),  633–638
  24. Optical properties of fibres with aluminophosphosilicate glass cores

    Kvantovaya Elektronika, 39:9 (2009),  857–862
  25. Radiation-resistant erbium-doped silica fibre

    Kvantovaya Elektronika, 37:10 (2007),  946–949
  26. Development and study of Bragg fibres with a large mode field and low optical losses

    Kvantovaya Elektronika, 36:7 (2006),  581–586
  27. Study of the radiation scattering indicatrix in fibres heavily doped with germanium oxide

    Kvantovaya Elektronika, 36:5 (2006),  464–469
  28. Pump radiation distribution in multi-element first cladding laser fibres

    Kvantovaya Elektronika, 35:11 (2005),  996–1002
  29. Efficient source of femtosecond pulses and its use for broadband supercontinuum generation

    Kvantovaya Elektronika, 35:7 (2005),  581–585
  30. Amplifying properties of heavily erbium-doped active fibres

    Kvantovaya Elektronika, 35:6 (2005),  559–562
  31. Yb-, Er–Yb-, and Nd-doped fibre lasers based on multi-element first cladding fibres

    Kvantovaya Elektronika, 35:4 (2005),  328–334
  32. Optical losses in single-mode and multimode fibres heavily doped with GeO2 and P2O5

    Kvantovaya Elektronika, 34:3 (2004),  241–246
  33. Mechanisms of optical losses in fibres with a high concentration of germanium dioxide

    Kvantovaya Elektronika, 33:7 (2003),  633–638
  34. Peculiarities of the photosensitivity of low-loss phosphosilica fibres

    Kvantovaya Elektronika, 32:2 (2002),  124–128
  35. Single-mode fibre with an additional ring fibre for two-channel communication and special applications

    Kvantovaya Elektronika, 31:8 (2001),  733–739
  36. High-power fibre Raman lasers emitting in the 1.22 — 1.34-μm range

    Kvantovaya Elektronika, 30:9 (2000),  791–793
  37. Continuous-wave highly efficient phosphosilicate fibre-based Raman laser (λ = 1.24 μm)

    Kvantovaya Elektronika, 29:2 (1999),  97–100
  38. Large-aperture low-loss fibre-optic Raman amplifier of 1.3 μm signals with 30 dB gain

    Kvantovaya Elektronika, 22:7 (1995),  643–644
  39. Raman fibre-optic amplifier of signals at the wavelength of 1.3 μm

    Kvantovaya Elektronika, 21:9 (1994),  807–809
  40. New method for fabrication of fiber waveguides doped with rare-earth elements

    Kvantovaya Elektronika, 17:7 (1990),  813–814
  41. Propagation of high-intensity excimer laser radiation through a quartz fiber waveguide

    Kvantovaya Elektronika, 15:5 (1988),  1067–1074
  42. Frost-resistant fiber-optic cable

    Kvantovaya Elektronika, 15:1 (1988),  232–235
  43. Frost-resistant fiber optic modules

    Kvantovaya Elektronika, 12:9 (1985),  1951–1954
  44. Influence of primary polymer coatings on low-temperature optical losses in fiber waveguides

    Kvantovaya Elektronika, 12:4 (1985),  839–841
  45. Methods for predicting the service life of fiber waveguides

    Kvantovaya Elektronika, 11:11 (1984),  2370–2372
  46. Increase in the strength of welded fiber waveguide joints

    Kvantovaya Elektronika, 11:9 (1984),  1879–1880
  47. Influence of water on the mechanical strength of fiber waveguides

    Kvantovaya Elektronika, 11:7 (1984),  1467–1469
  48. High-strength fiber waveguides made by chemical vapor deposition method

    Kvantovaya Elektronika, 9:7 (1982),  1506–1509
  49. Influence of γ irradiation on the temperature dependence of the optical losses in quartz glass–polymer fiber waveguides

    Kvantovaya Elektronika, 8:8 (1981),  1816–1817
  50. Investigation of the mechanical strength of fiber-optic waveguides used in optical communications systems

    Kvantovaya Elektronika, 8:4 (1981),  844–852
  51. Three-layer optical waveguides of the ring type

    Kvantovaya Elektronika, 8:2 (1981),  347–350
  52. Glass fiber waveguide made of anhydrous quartz glass with a reflecting silicone-rubber cladding

    Kvantovaya Elektronika, 8:1 (1981),  176–178
  53. Selection of the parameters of a single-mode waveguide to ensure minimal dispersion in the region of $1,55\mu m$

    Kvantovaya Elektronika, 7:12 (1980),  2656–2658
  54. Frost-resistant fiber waveguides with a quartz glass core and a silicone rubber cladding

    Kvantovaya Elektronika, 7:10 (1980),  2207–2210
  55. Investigation of the dependence of the pass band of a multimode fiber waveguide on the excitation conditions

    Kvantovaya Elektronika, 6:8 (1979),  1767–1770
  56. Optical fiber waveguides with a large-diameter core and low optical losses

    Kvantovaya Elektronika, 6:5 (1979),  1084–1085
  57. Drawing of glass-fiber waveguides using CO2 lasers

    Kvantovaya Elektronika, 5:9 (1978),  2064–2065
  58. Low-loss fiber-optical cable

    Kvantovaya Elektronika, 5:3 (1978),  700–703
  59. Deformation of the resonator of a neodymium glass laser due to a change in the polarizability of excited neodymium ions

    Kvantovaya Elektronika, 5:2 (1978),  464–468
  60. Investigation of optical-fiber systems for communication between computer units

    Kvantovaya Elektronika, 4:11 (1977),  2456–2459
  61. Determination of the temperature dependence of the linear expansion coefficient and of the temperature coefficient of the refractive index of laser glasses

    Kvantovaya Elektronika, 3:5 (1976),  1151–1153
  62. Low-loss glass-fiber waveguides

    Kvantovaya Elektronika, 2:9 (1975),  2103–2105
  63. Enhancement of the brightness of the output of neodymium-glass lasers by selection of the composition of the active-element matrix

    Kvantovaya Elektronika, 1973, no. 4(16),  113–115
  64. The change of sign of glass laser rod thermal lens when the thermal optical constant of glass is changed

    Dokl. Akad. Nauk SSSR, 205:3 (1972),  556–559

  65. In memory of Vyacheslav Vasil'evich Osiko

    Kvantovaya Elektronika, 50:1 (2020),  94
  66. Evgeny Mikhailovich Dianov (on his 80th birthday)

    UFN, 186:1 (2016),  111–112


© Steklov Math. Inst. of RAS, 2024