RUS  ENG
Full version
PEOPLE

Ivanov Alexandr Olegovich

Publications in Math-Net.Ru

  1. Calculation of the Gromov–Hausdorff distance using the Borsuk number

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1,  33–38
  2. Recognition of anomalies of an a priori unknown type

    Chebyshevskii Sb., 23:5 (2022),  227–240
  3. Isometric embeddings of bounded metric spaces in the Gromov-Hausdorff class

    Mat. Sb., 213:10 (2022),  90–107
  4. Geometry of the Gromov-Hausdorff distance on the class of all metric spaces

    Mat. Sb., 213:5 (2022),  68–87
  5. The Fermat-Steiner problem in the space of compact subsets of $\mathbb R^m$ endowed with the Hausdorff metric

    Mat. Sb., 212:1 (2021),  28–62
  6. Gromov–Hausdorff distances to simplexes and some applications to discrete optimisation

    Chebyshevskii Sb., 21:2 (2020),  169–189
  7. Hausdorff realization of linear geodesics in the Gromov–Hausdorff space

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 182 (2020),  33–38
  8. The Gromov–Hausdorff distances to simplexes

    Chebyshevskii Sb., 20:2 (2019),  108–122
  9. Êîìïüþòåðíûå ìîäåëè â ãåîìåòðèè è äèíàìèêå

    Intelligent systems. Theory and applications, 21:1 (2017),  164–191
  10. Steiner's problem in the Gromov–Hausdorff space: the case of finite metric spaces

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  152–161
  11. Analytic deformations of minimal networks

    Fundam. Prikl. Mat., 21:5 (2016),  159–180
  12. The Gromov–Hausdorff Metric on the Space of Compact Metric Spaces is Strictly Intrinsic

    Mat. Zametki, 100:6 (2016),  947–950
  13. Analyzing the data bank of proteins' space structures (PDB): a geometrical approach

    Fundam. Prikl. Mat., 20:3 (2015),  33–46
  14. Minimal spanning trees on infinite sets

    Fundam. Prikl. Mat., 20:2 (2015),  89–103
  15. Stabilization of a locally minimal forest

    Mat. Sb., 205:3 (2014),  83–118
  16. The geometry of inner spanning trees for planar polygons

    Izv. RAN. Ser. Mat., 76:2 (2012),  3–36
  17. Yaroslavl International Conference on Discrete Geometry (dedicated to the centenary of A. D. Alexandrov)

    Model. Anal. Inform. Sist., 19:6 (2012),  92–100
  18. Current Open Problems in Discrete and Computational Geometry

    Model. Anal. Inform. Sist., 19:5 (2012),  5–17
  19. The First Yaroslavl Summer School on Discrete and Computational Geometry

    Model. Anal. Inform. Sist., 19:4 (2012),  168–173
  20. The Structure of Minimal Steiner Trees in the Neighborhoods of the Lunes of Their Edges

    Mat. Zametki, 91:3 (2012),  353–370
  21. One-dimensional Gromov minimal filling problem

    Mat. Sb., 203:5 (2012),  65–118
  22. One-dimensional minimal fillings with negative edge weights

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 5,  3–8
  23. Generalized Maxwell formula for the length of a minimal tree with a given topology

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 3,  7–14
  24. Computer modeling of curves and surfaces

    Fundam. Prikl. Mat., 15:5 (2009),  63–94
  25. Stabilization of Locally Minimal Trees

    Mat. Zametki, 86:4 (2009),  512–524
  26. Immersed polygons and their diagonal triangulations

    Izv. RAN. Ser. Mat., 72:1 (2008),  67–98
  27. Uniqueness of Steiner minimal trees on boundaries in general position

    Mat. Sb., 197:9 (2006),  55–90
  28. Sets admitting connection by graphs of finite length

    Mat. Sb., 196:6 (2005),  71–110
  29. Steiner Ratio for Manifolds

    Mat. Zametki, 74:3 (2003),  387–395
  30. Branching geodesics in normed spaces

    Izv. RAN. Ser. Mat., 66:5 (2002),  33–82
  31. Melzak's algorithm for phylogenetic spaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 3,  22–28
  32. Nontrivial Critical Networks. Singularities of Lagrangians and a Criterion for Criticality

    Mat. Zametki, 69:4 (2001),  566–580
  33. Differential calculus on the space of Steiner minimal trees in Riemannian manifolds

    Mat. Sb., 192:6 (2001),  31–50
  34. Planar Manhattan local minimal and critical networks

    Zap. Nauchn. Sem. POMI, 279 (2001),  111–140
  35. Steiner ratio for Riemannian manifolds

    Uspekhi Mat. Nauk, 55:6(336) (2000),  139–140
  36. The space of parallel linear networks with a fixed boundary

    Izv. RAN. Ser. Mat., 63:5 (1999),  83–126
  37. Geometry of convex polygons and locally minimal binary trees spanning these polygons

    Mat. Sb., 190:1 (1999),  69–108
  38. Linear nets and convex polyhedra

    Zap. Nauchn. Sem. POMI, 252 (1998),  52–61
  39. The geometry of minimal networks with a given topology and a fixed boundary

    Izv. RAN. Ser. Mat., 61:6 (1997),  119–152
  40. Minimal weighted planar binary trees

    Fundam. Prikl. Mat., 2:2 (1996),  375–409
  41. The classification of minimal skeletons with a regular boundary

    Uspekhi Mat. Nauk, 51:4(310) (1996),  157–158
  42. Structure of the set of planar minimal networks with given topology and boundary

    Uspekhi Mat. Nauk, 51:3(309) (1996),  201–202
  43. The geometry of plane linear trees

    Uspekhi Mat. Nauk, 51:2(308) (1996),  161–162
  44. On minimal binary trees with a regular boundary

    Uspekhi Mat. Nauk, 51:1(307) (1996),  139–140
  45. The twist number of planar linear trees

    Mat. Sb., 187:8 (1996),  41–92
  46. Weighted minimal binary trees

    Uspekhi Mat. Nauk, 50:3(303) (1995),  155–156
  47. The geometry of plane locally minimal binary trees

    Mat. Sb., 186:9 (1995),  45–76
  48. Topologies of locally minimal planar binary trees

    Uspekhi Mat. Nauk, 49:6(300) (1994),  191–192
  49. Minimal networks on regular polygons: realization of linear tilingsMinimal networks on regular polygons: realization of linear tilings

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, no. 6,  77–80
  50. Geometry of minimal networks and the one-dimensional Plateau problem

    Uspekhi Mat. Nauk, 47:2(284) (1992),  53–115
  51. Classification of closed minimal networks on flat two-dimensional tori

    Mat. Sb., 183:12 (1992),  3–44
  52. Sufficient condition for stability of invariant cones of any codimension in Euclidean space $R^N$

    Mat. Zametki, 49:1 (1991),  151–153
  53. The Steiner problem in the plane or in plane minimal nets

    Mat. Sb., 182:12 (1991),  1813–1844
  54. Solution of the Steiner problem for convex boundaries

    Uspekhi Mat. Nauk, 45:2(272) (1990),  207–208
  55. Calibration forms and new examples of stable and globally minimal surfaces

    Mat. Sb., 181:11 (1990),  1443–1463
  56. Deformation of a manifold that decreases volume at maximum rate

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 3,  14–18

  57. Sergey Sergeevich Demidov (to the 80-th anniversary of his birth)

    Chebyshevskii Sb., 24:1 (2023),  334–355
  58. In memory of Vadim Fedorovich Kirichenko

    Chebyshevskii Sb., 23:1 (2022),  328–329
  59. Yuri Valentinovich Nesterenko (to the 75th anniversary)

    Chebyshevskii Sb., 23:1 (2022),  10–20
  60. In memory of Vyacheslav Alexandrovich Artamonov

    Chebyshevskii Sb., 22:5 (2021),  417–418
  61. Vladimir Nikolaevich Chubarikov (to the 70th anniversary of his birth)

    Chebyshevskii Sb., 22:5 (2021),  5–15
  62. Anatolii Timofeevich Fomenko

    Chebyshevskii Sb., 21:2 (2020),  5–7
  63. The memory of Michel Deza

    Chebyshevskii Sb., 18:1 (2017),  4–28
  64. Academician Anatolii Timofeevich Fomenko

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 6,  66–68
  65. International Conference “Geometry, Topology, and Applications”

    Model. Anal. Inform. Sist., 20:6 (2013),  95–102


© Steklov Math. Inst. of RAS, 2024