RUS  ENG
Full version
PEOPLE

Babin Anatolii Vladimirovich

Publications in Math-Net.Ru

  1. Spatially chaotic solutions of parabolic equations, and the preservation of homotopies

    Dokl. Akad. Nauk, 350:4 (1996),  439–442
  2. Homotopy Conservation and Spatially Complex Solutions of Parabolic Equations in Several Variables

    Funktsional. Anal. i Prilozhen., 30:3 (1996),  73–76
  3. Dynamics of spatially chaotic solutions of parabolic equations

    Mat. Sb., 186:10 (1995),  3–30
  4. Continuous dependence of attractors on the shape of domain

    Zap. Nauchn. Sem. POMI, 221 (1995),  58–66
  5. Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain

    Izv. RAN. Ser. Mat., 58:2 (1994),  3–18
  6. On smoothness up to the boundary of solutions of parabolic equations with a degenerate operator

    Mat. Sb., 185:7 (1994),  13–38
  7. Asymptotic behavior as $|x|\to\infty$ of steady flows in a pipe

    Mat. Zametki, 53:3 (1993),  3–14
  8. Asymptotic behavior as $\vert x\vert\to\infty$ of strongly perturbed Poiseuille flows

    Dokl. Akad. Nauk SSSR, 316:4 (1991),  796–800
  9. Asymptotics as $|x|\to\infty$ of functions lying on an attractor of the two-dimensional Navier–Stokes system in an unbounded plane domian

    Mat. Sb., 182:12 (1991),  1683–1709
  10. On the smoothness of solutions of differential equations at singular points of the boundary of the domain

    Izv. Akad. Nauk SSSR Ser. Mat., 54:6 (1990),  1134–1154
  11. Connection between analytic properties of operator functions and smoothness of solutions of degenerate differential equations

    Funktsional. Anal. i Prilozhen., 22:1 (1988),  60–61
  12. Spectral and stabilized asymptotic behaviour of solutions of non-linear evolution equations

    Uspekhi Mat. Nauk, 43:5(263) (1988),  99–132
  13. Attractors of parabolic and hyperbolic equations, the character of their compactness and attraction

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 3,  71–73
  14. The behavior as $t\to+\infty$ of solutions of nonlinear evolution equations depending on a parameter

    Dokl. Akad. Nauk SSSR, 295:4 (1987),  786–790
  15. On unstable sets of evolution equations in the neighborhood of critical points of a stationary curve

    Izv. Akad. Nauk SSSR Ser. Mat., 51:1 (1987),  44–78
  16. Smoothness of solutions of the Cauchy problem for degenerate parabolic equations

    Mat. Zametki, 42:1 (1987),  60–72
  17. Membership of solutions of differential equations in Nikol'skii

    Dokl. Akad. Nauk SSSR, 289:6 (1986),  1289–1293
  18. Unstable invariant sets of semigroups of non-linear operators and their perturbations

    Uspekhi Mat. Nauk, 41:4(250) (1986),  3–34
  19. Stationary curves and unstable invariant manifolds near critical points of evolution equations, depending on the parameter

    Dokl. Akad. Nauk SSSR, 280:1 (1985),  19–23
  20. Maximal attractors of semigroups corresponding to evolution differential equations

    Mat. Sb. (N.S.), 126(168):3 (1985),  397–419
  21. Construction and investigation of solutions of differential equations by methods in the theory of approximation of functions

    Mat. Sb. (N.S.), 123(165):2 (1984),  147–173
  22. The dimension of attractors of the Navier–Stokes system and other evolution equations

    Dokl. Akad. Nauk SSSR, 271:6 (1983),  1289–1293
  23. Solution of the cauchy problem with the help of weighted approximations of exponents by polynomials

    Funktsional. Anal. i Prilozhen., 17:4 (1983),  75–76
  24. Polynomial solvability of differential equations with coefficients from classes of infinitely differentiable functions

    Mat. Zametki, 34:2 (1983),  249–260
  25. Attractors of partial differential evolution equations and estimates of their dimension

    Uspekhi Mat. Nauk, 38:4(232) (1983),  133–187
  26. Upper and lower bounds of the dimension of attractors of evolution partial differential equations

    Sibirsk. Mat. Zh., 24:5 (1983),  15–30
  27. An iterative method applicable directly to differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 23:4 (1983),  771–784
  28. Attractors of quasilinear parabolic equations

    Dokl. Akad. Nauk SSSR, 264:4 (1982),  780–784
  29. Existence of and an estimate for the dimension of attractors in quasilinear parabolic equations, and Navier–Stokes systems

    Uspekhi Mat. Nauk, 37:3(225) (1982),  173–174
  30. Attractors of Navier–Stokes systems and of parabolic equations, and estimates for their dimensions

    Zap. Nauchn. Sem. LOMI, 115 (1982),  3–15
  31. Analytic linearization and complex powers of a nonlinear differential operator

    Funktsional. Anal. i Prilozhen., 14:3 (1980),  61–62
  32. On the expression of a solution of the equation $Au=h$ in terms of iterations of the unbounded operator $A$, and the weighted approximation of functions

    Uspekhi Mat. Nauk, 34:3(207) (1979),  189
  33. Fractional powers of a nonlinear analytic differential operator

    Mat. Sb. (N.S.), 109(151):1(5) (1979),  12–45
  34. Expression of $A^{-1}$ by iteration of an operator $A$ acting in a Banach space

    Funktsional. Anal. i Prilozhen., 12:4 (1978),  77–78
  35. A formula expressing the solution of a differential equation with analytic coefficients on a manifold without boundary in terms of the local data of the problem

    Uspekhi Mat. Nauk, 33:1(199) (1978),  203–204
  36. An expression for the solution of a differential equation in terms of iterates of differential operators

    Mat. Sb. (N.S.), 105(147):4 (1978),  467–484
  37. Expression of $A^{-1}$ in terms of iterates of an unbounded self-adjoint operator $A$ on the analytic vectors

    Funktsional. Anal. i Prilozhen., 11:4 (1977),  3–5
  38. A formula expressing the solution of a differential equation with analytic coefficients on a manifold without boundary in terms of the data of the problem

    Mat. Sb. (N.S.), 101(143):4(12) (1976),  610–638
  39. On global solvability of nonlinear parabolic boundary-value problems

    Mat. Sb. (N.S.), 97(139):1(5) (1975),  94–109
  40. Finite dimensionality of the kernel and cokernel of quasilinear elliptic mappings

    Mat. Sb. (N.S.), 93(135):3 (1974),  422–450

  41. Marko Iosifovich Vishik (obituary)

    Uspekhi Mat. Nauk, 68:2(410) (2013),  197–200
  42. Mark Iosifovich Vishik (on his 75th birthday)

    Uspekhi Mat. Nauk, 52:4(316) (1997),  225–232
  43. Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics

    Uspekhi Mat. Nauk, 42:3(255) (1987),  221–228
  44. Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics

    Uspekhi Mat. Nauk, 38:2(230) (1983),  225–232


© Steklov Math. Inst. of RAS, 2024