RUS  ENG
Full version
PEOPLE

Drakin Aleksandr Evgen'evich

Publications in Math-Net.Ru

  1. Homogeneous luminescence distribution in the active element of high-power diode-pumped quantrons

    Kvantovaya Elektronika, 53:9 (2023),  689–694
  2. Structure of axial modes of a diode laser with an external cavity containing a volume phase grating

    Kvantovaya Elektronika, 53:7 (2023),  519–526
  3. Optical method for determining the amplitude of microwave current modulation in vertical-cavity surface emitting lasers

    Kvantovaya Elektronika, 52:10 (2022),  895–898
  4. High-power, narrow-band radiation source based on integrated external-cavity laser diodes

    Kvantovaya Elektronika, 52:9 (2022),  789–793
  5. Effect of the thickness of the passivating reactive titanium layer of mirror facets on the electrical characteristics of diode lasers

    Kvantovaya Elektronika, 52:8 (2022),  728–730
  6. Coherent combining of diode laser beams in a master oscillator – zigzag slab power amplifier system

    Kvantovaya Elektronika, 49:11 (2019),  1014–1018
  7. Role of spontaneous emission in the formation of the steady-state optical spectrum of a diode laser

    Kvantovaya Elektronika, 49:8 (2019),  717–727
  8. Electron-beam-excited high-pressure He – Ar mixture as a potential active medium for an optically pumped laser

    Kvantovaya Elektronika, 48:12 (2018),  1174–1178
  9. Amplitude/phase modulation and spectrum of the vertical-cavity surface-emitting laser output

    Kvantovaya Elektronika, 47:9 (2017),  835–841
  10. Gain distribution in the volume of a solid-state active element of a diode-pumped high-power laser

    Kvantovaya Elektronika, 47:7 (2017),  620–626
  11. Intrinsic spontaneous emission-induced fluctuations of the output optical beam power and phase in a diode amplifier

    Kvantovaya Elektronika, 46:8 (2016),  699–702
  12. Amplified spontaneous emission spectrum at the output of a diode amplifier saturated by an input monochromatic wave

    Kvantovaya Elektronika, 46:8 (2016),  693–698
  13. Experimental study of a modulated beam AlGaAs/GaAs diode amplifier operating in the highly saturated gain regime

    Kvantovaya Elektronika, 44:11 (2014),  1005–1011
  14. Diode amplifier of modulated optical beam power

    Kvantovaya Elektronika, 44:11 (2014),  997–1004
  15. Amplitude and phase modulation of radiation in a travelling-wave amplifier based on a laser diode

    Kvantovaya Elektronika, 43:8 (2013),  699–705
  16. Performance of an optical amplifier/modulator based on a diode laser

    Kvantovaya Elektronika, 40:9 (2010),  782–788
  17. Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 2. Calculation of the spatial temperature distribution and threshold of the catastrophic optical degradation

    Kvantovaya Elektronika, 40:7 (2010),  589–595
  18. Catastrophic optical degradation of the output facet of high-power single-transverse-mode diode lasers. 1. Physical model

    Kvantovaya Elektronika, 40:7 (2010),  583–588
  19. Radiation parameters of ridge lasers at high pump currents

    Kvantovaya Elektronika, 38:11 (2008),  993–1000
  20. Optimisation of waveguide parameters of laser InGaAs/AlGaAs/GaAs heterostructures for obtaining the maximum beam width in the resonator and the maximum output power

    Kvantovaya Elektronika, 38:10 (2008),  935–939
  21. Diode-array-pumped repetitively pulsed neodymium phosphate glass laser

    Kvantovaya Elektronika, 38:9 (2008),  805–812
  22. Modes of a semiconductor rectangular microcavity

    Kvantovaya Elektronika, 38:1 (2008),  16–22
  23. Simulation of emission characteristics and optimisation of waveguiding parameters of a ridge semiconductor heterolaser to maximise the emission brightness

    Kvantovaya Elektronika, 36:11 (2006),  1058–1064
  24. Autocorrelation function and emission spectrum of single-transverse-mode heterolasers in the self-sustained intensity pulsation regime

    Kvantovaya Elektronika, 36:8 (2006),  751–757
  25. Spectral properties of a semiconductor α-DFB laser cavity

    Kvantovaya Elektronika, 36:8 (2006),  745–750
  26. Efficiency of resonance pumping and optical gain in a Nd-doped phosphate glass excited by diode arrays

    Kvantovaya Elektronika, 36:4 (2006),  302–308
  27. Quality of the optical beam of a high-power, single-mode, 0.81-μm ridge AlGaAs heterolaser

    Kvantovaya Elektronika, 35:6 (2005),  515–519
  28. Simulation of the material gain in quantum-well InGaAs layers used in 1.06-μm heterolasers

    Kvantovaya Elektronika, 35:4 (2005),  316–322
  29. High-power single-transverse-mode ridge optical waveguide semiconductor lasers

    Kvantovaya Elektronika, 32:12 (2002),  1099–1104
  30. Low-frequency intensity fluctuations in high-power single-mode ridge quantum-well InGaAs/AlGaAs heterostructure semiconductor lasers

    Kvantovaya Elektronika, 32:9 (2002),  809–814
  31. Dependence of the radiation pattern of a leaky-mode, quantum-well heterolaser on the pump current

    Kvantovaya Elektronika, 31:10 (2001),  847–852
  32. Optical loss in strained quantum-well semiconductor ridge lasers

    Kvantovaya Elektronika, 30:10 (2000),  878–880
  33. Brightness and filamentation of a beam from powerful cw quantum-well In0.2Ga0.8As/GaAs lasers

    Kvantovaya Elektronika, 30:5 (2000),  401–405
  34. Experimental study of the α-factor in InGaAs/AlGaAs/GaAs strained quantum-well lasers

    Kvantovaya Elektronika, 30:4 (2000),  315–320
  35. Experimental determination of the factor representing spontaneous emission into a mode of a semiconductor laser operating on a leaky wave

    Kvantovaya Elektronika, 27:2 (1999),  131–133
  36. Angular distribution of the radiation from quantum-well ‘leaky-wave’ InGaAs/GaAs lasers

    Kvantovaya Elektronika, 26:1 (1999),  33–36
  37. Efficiency and intensity distribution in a semiconductor laser operating in the ‘leaky’ regime

    Kvantovaya Elektronika, 26:1 (1999),  28–32
  38. Dynamics of the optical damage of output mirrors of ridge semiconductor lasers based on strained quantum-well heterostructures

    Kvantovaya Elektronika, 25:7 (1998),  647–650
  39. Calculation of the propagation constant of a laser mode in multilayer quantum-well heterostructures by the ‘incoming’ wave method

    Kvantovaya Elektronika, 25:6 (1998),  488–492
  40. Self-distribution of the current in laser diodes and its possible use for reducing the optical nonlinearity of the active medium

    Kvantovaya Elektronika, 23:4 (1996),  307–310
  41. Power hysteresis and waveguide bistability of stripe quantum-well InGaAs\/GaAs\/GaAIAs heterolasers with a strained active layer

    Kvantovaya Elektronika, 22:4 (1995),  309–320
  42. Directional pattern and other output properties of a quantum-well injection laser for the 780-nm spectral region

    Kvantovaya Elektronika, 19:10 (1992),  1024–1031
  43. Low-threshold buried 1.3-μm injection lasers with two-channel lateral confinement and n-type InP substrates

    Kvantovaya Elektronika, 16:3 (1989),  457–462
  44. Continuous-wave lasing at room temperature in InGaSbAs/GaAlSbAs injection heterostructures emitting in the spectral range 2.2–2.4 μm

    Kvantovaya Elektronika, 15:11 (1988),  2171–2172
  45. Fast degradation defects on reflecting faces of InGaAsP/lnP lasers emitting in the 1.3 μ range

    Kvantovaya Elektronika, 14:1 (1987),  204–205
  46. Injection InGaSbAs laser emitting at 2.4μ (300K)

    Kvantovaya Elektronika, 13:10 (1986),  2119–2120
  47. Injection InGaSbAs lasers emitting radiation of wavelengths 1.9–2.3μ at room temperature

    Kvantovaya Elektronika, 12:6 (1985),  1309–1311
  48. LOW-THRESHOLD INJECTION-LASERS BASED ON THICK GAINPAS/INP (1.2-1.6 MKM) HETEROSTRUCTURES

    Zhurnal Tekhnicheskoi Fiziki, 54:3 (1984),  551–557
  49. Injection InGaAsP/lnP lasers with a threshold current density of 0.5 kA/cm2 at 300 Ê

    Kvantovaya Elektronika, 11:4 (1984),  645–646
  50. Three-layer waveguide InGaAsP/lnP injection lasers

    Kvantovaya Elektronika, 11:3 (1984),  631–633
  51. Qualitative analysis of the threshold current of quantum-size semiconductor lasers

    Kvantovaya Elektronika, 11:1 (1984),  178–181
  52. Continuous-wave injection lasers emitting in the 1.5–1.6 μ range

    Kvantovaya Elektronika, 9:9 (1982),  1749
  53. Properties of AIGaAsSb–GaSb heterojunction injection lasers in the 1.4–1.8 $\mu m$ wavelength range

    Kvantovaya Elektronika, 7:1 (1980),  91–96
  54. High-efficiency GaInPAs/InP light-emitting diodes

    Kvantovaya Elektronika, 5:11 (1978),  2488–2489


© Steklov Math. Inst. of RAS, 2024