RUS  ENG
Full version
PEOPLE

L'dov Andrei Yur'evich

Publications in Math-Net.Ru

  1. Electron-beam-excited high-pressure He – Ar mixture as a potential active medium for an optically pumped laser

    Kvantovaya Elektronika, 48:12 (2018),  1174–1178
  2. Quenching of the resonance 5s(3P1) state of krypton atoms in collisions with krypton and helium atoms

    Kvantovaya Elektronika, 44:11 (2014),  1066–1070
  3. Quenching of krypton atoms in the metastable 5s (3P2) state in collisions with krypton and helium atoms

    Kvantovaya Elektronika, 43:8 (2013),  720–724
  4. Enhanced technique for measuring collisional quenching rate coefficients in rare-gas mixtures

    Kvantovaya Elektronika, 41:2 (2011),  128–134
  5. Quenching of the resonance 5s(3P1) state of the krypton atomin collisions with krypton and argon atoms

    Kvantovaya Elektronika, 40:2 (2010),  144–148
  6. Deactivation of krypton atoms in the metastable 5s(3P2) state in collisions with krypton and argon atoms

    Kvantovaya Elektronika, 39:9 (2009),  821–824
  7. Deactivation of xenon atoms in the $6s$ resonant state in collisions with xenon and helium atoms

    Kvantovaya Elektronika, 26:2 (1999),  131–133
  8. Influence of the pump power and of the addition of helium on the energy parameters of an electron-beam-pumped Ar — Xe laser

    Kvantovaya Elektronika, 25:6 (1998),  493–500
  9. Deactivation of the xenon atom in the 6$s$ metastable state in collisions with xenon and helium atoms

    Kvantovaya Elektronika, 25:3 (1998),  229–232
  10. Collisional deactivation of the $6s'$ states of the Xe atom in the active medium of a high-pressure Ar – Xe laser

    Kvantovaya Elektronika, 24:11 (1997),  987–990
  11. Determination of the electron density in a high-temperature laboratory plasma form the structure of the satellites of resonance lines of multiply charged helium-like ions

    Kvantovaya Elektronika, 23:2 (1996),  143–144
  12. Deactivation of 3s levels of the neon atom by collisions with neon, argon, krypton, and xenon

    Kvantovaya Elektronika, 22:3 (1995),  233–238
  13. Collisional quenching of the 1P1 level of the Ne atom in pure Ne and in mixtures with Ar, Kr, and Xe

    Kvantovaya Elektronika, 20:9 (1993),  851–855
  14. Dynamics of the gain and generation of an Ar–Xe laser pumped by an electron beam

    Kvantovaya Elektronika, 20:7 (1993),  669–676
  15. Electron-beam-pumped laser utilizing mixtures of Xe, Kr, and Ar with two-component buffer gases

    Kvantovaya Elektronika, 18:11 (1991),  1290–1294
  16. Electron-beam-pumped He–Xe, He–Kr, and He–Ar lasers

    Kvantovaya Elektronika, 18:8 (1991),  921–925
  17. Atmospheric-pressure electron-beam-controlled Ar–Xe laser

    Kvantovaya Elektronika, 16:6 (1989),  1132–1134
  18. Electron-beam-controlled Ar–Xe laser using an electron gun with a heated cathode

    Kvantovaya Elektronika, 15:3 (1988),  453–454
  19. High-power electron-beam-controlled Ar–Xe laser with (2.5–5)×10–5 rad beam divergence

    Kvantovaya Elektronika, 14:9 (1987),  1739–1747
  20. Possibility of construction of a pulse-periodic large-volume electron-beamcontrolled laser utilizing infrared transitions in the Xe atom and characterized by a specific output power of 0.5–1 W/cm3

    Kvantovaya Elektronika, 13:8 (1986),  1543–1544
  21. Influence of Ne on the energy characteristics of high-pressure lasers with electron-beam-pumped mixtures of He with Ar, Kr, and Xe

    Kvantovaya Elektronika, 13:3 (1986),  488–492
  22. High-pressure electron-beam-controlled lasers utilizing infrared transitions in ArI

    Kvantovaya Elektronika, 13:3 (1986),  482–487
  23. Electron-beam-pumped high-pressure laser utilizing electronic transitions in the Kr atom

    Kvantovaya Elektronika, 13:1 (1986),  189–191
  24. Possibility of pulse generation with the width of 100 microseconds during high-pressure laser excitation by electron-beams on the $Ar:Xe$ mixture

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 11:3 (1985),  173–176
  25. High-pressure power laser utilizing 3p–3s transitions in NeI generating radiation of wavelengths 703 and 725 nm

    Kvantovaya Elektronika, 12:7 (1985),  1521–1524
  26. Electron-beam-controlled atomic Xe infrared laser

    Kvantovaya Elektronika, 11:9 (1984),  1722–1736
  27. Investigation of a plasma recombination laser utilizing an He–Ne mixture excited by λ = 10.6 μ laser pulses

    Kvantovaya Elektronika, 9:1 (1982),  92–98
  28. Investigation of the dynamics of plasma formation near a target acted on by microsecond $CO_2$ laser pulses

    Kvantovaya Elektronika, 7:12 (1980),  2599–2603
  29. Synchronization of electron-beam-controlled CO2 lasers with a plasma mirror

    Kvantovaya Elektronika, 5:12 (1978),  2635–2637
  30. Reflection of radiation from a plasma mirror of an electron-beam-controlled CO2 laser

    Kvantovaya Elektronika, 4:10 (1977),  2268–2271
  31. Dynamics of stimulated emission from an electron-beamcontrolled CO2 laser with a plasma mirror

    Kvantovaya Elektronika, 4:8 (1977),  1761–1770
  32. Investigation of a plasma mirror of an electron-beam-controlled CO2 laser with heating radiation power densities of 1011–1012 W/cm2

    Kvantovaya Elektronika, 4:6 (1977),  1307–1312
  33. Measurement of gasdynamic pressure on a target subjected to CO2 laser radiation

    Kvantovaya Elektronika, 4:4 (1977),  837–843
  34. Investigation of gasdynamic processes and recoil impulse produced by optical breakdown of air near a target surface by radiation of an electron-beam-controlled CO$_2$ laser

    Kvantovaya Elektronika, 3:9 (1976),  1955–1961

  35. Errata to the article: Atmospheric-pressure electron-beam-controlled Ar–Xe laser

    Kvantovaya Elektronika, 16:12 (1989),  2599


© Steklov Math. Inst. of RAS, 2024