RUS  ENG
Full version
PEOPLE

Ha Huy Bang

Publications in Math-Net.Ru

  1. Bernstein–Nikolskiĭ type inequality in Lorentz spaces and related topics

    Vladikavkaz. Mat. Zh., 7:2 (2005),  90–100
  2. On embedding theorems for Sobolev–Orlicz spaces of infinite order

    Dokl. Akad. Nauk, 354:3 (1997),  316–319
  3. Nonconvex cases of the Paley–Wiener–Schwartz theorem

    Dokl. Akad. Nauk, 354:2 (1997),  165–168
  4. Properties of functions in Orlicz spaces that depend on the geometry of their spectra

    Izv. RAN. Ser. Mat., 61:2 (1997),  163–198
  5. Separability of Sobolev-Orlicz spaces of infinite order

    Mat. Zametki, 61:1 (1997),  141–143
  6. Theorems of Paley–Wiener–Schwartz type

    Trudy Mat. Inst. Steklova, 214 (1997),  298–319
  7. The existence of a point spectral radius of pseudodifferential operators

    Dokl. Akad. Nauk, 348:6 (1996),  740–742
  8. Change of variables in Sobolev–Orlicz spaces of infinite order

    Mat. Zametki, 57:3 (1995),  331–337
  9. On an algebra of pseudodifferential operators

    Mat. Sb., 186:7 (1995),  3–14
  10. Criteria for the nontriviality of infinite-order Sobolev–Orlicz classes and spaces in a complete Euclidean space

    Sibirsk. Mat. Zh., 31:1 (1990),  208–213
  11. Solvability of infinite-order nonlinear differential equations in unbounded domains

    Dokl. Akad. Nauk SSSR, 305:1 (1989),  48–51
  12. Certain imbedding theorems for spaces of periodic functions of infinite order

    Mat. Zametki, 43:4 (1988),  509–517
  13. On imbedding theorems in Sobolev spaces of infinite order

    Mat. Sb. (N.S.), 136(178):1(5) (1988),  115–127
  14. Nontriviality of the Sobolev–Orlich classes and spaces of infinite order on the line

    Mat. Zametki, 39:3 (1986),  453–459
  15. The applicability of composite differential operators to some classes of exponential functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 7,  83–85


© Steklov Math. Inst. of RAS, 2025