RUS  ENG
Full version
PEOPLE

Kazantsev Sergey Yur'evich

Publications in Math-Net.Ru

  1. Assessment of the availability of atmospheric optical communications in various regions of the Russian Federation

    Sistemy i Sredstva Inform., 35:2 (2025),  61–80
  2. Algorithm for quickly generating a key sequence using a quantum communication channel

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  93–98
  3. Wavefront sensor for wide-aperture laser beams and its applications

    Zhurnal Tekhnicheskoi Fiziki, 92:9 (2022),  1410–1414
  4. Possibility of creating a modular system for quantum key distribution in the atmosphere

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:15 (2022),  15–18
  5. Spectra of selective radiation of Al$_{2}$O$_{3}$ : Ti$^{3+}$ under laser-thermal heating

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:5 (2020),  41–43
  6. Semiconductor plasma antennas formed by laser radiation

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:24 (2019),  6–9
  7. Gas discharge plasma self-organization in the SF$_{6}$ and it's base

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:9 (2019),  23–25
  8. Two-photon absorption of nonchain HF laser radiation in germanium single crystals

    Optics and Spectroscopy, 124:6 (2018),  790–794
  9. Repetitively pulsed Fe : ZnSe laser with an average output power of 20 W at room temperature of the polycrystalline active element

    Kvantovaya Elektronika, 47:4 (2017),  303–307
  10. Room-temperature Fe2+ : ZnS single crystal laser pumped by an electric-discharge HF laser

    Kvantovaya Elektronika, 46:9 (2016),  769–771
  11. Room-temperature 1.2-J Fe2+:ZnSe laser

    Kvantovaya Elektronika, 46:1 (2016),  11–12
  12. High-power pulse repetitive HF(DF) laser with a solid-state pump generator

    Kvantovaya Elektronika, 45:11 (2015),  989–992
  13. Scaling of energy characteristics of polycrystalline Fe$^{2+}$:ZnSe laser at room temperature

    Kvantovaya Elektronika, 45:9 (2015),  823–827
  14. Room-temperature high-energy Fe2+:ZnSe laser

    Kvantovaya Elektronika, 44:6 (2014),  505–506
  15. Fe2+ : ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature

    Kvantovaya Elektronika, 44:2 (2014),  141–144
  16. Influence of gas temperature on self-sustained volume discharge characteristics in working mixtures of a repetitively pulsed ÑOIL

    Kvantovaya Elektronika, 44:2 (2014),  138–140
  17. Discharge formation systems for generating atomic iodine in a pulse-periodic oxygen–iodine laser

    Kvantovaya Elektronika, 44:1 (2014),  89–93
  18. Initiation of ignition of a combustible gas mixture in a closed volume by the radiation of a high-power pulsed CO2 laser

    Kvantovaya Elektronika, 42:1 (2012),  65–70
  19. On stability of self-sustained volume discharge in working mixtures of non-chain electrochemical HF laser

    Kvantovaya Elektronika, 41:8 (2011),  703–708
  20. Generation of an electric signal in the interaction of HF-laser radiation with bottom surface of a water column

    Kvantovaya Elektronika, 40:8 (2010),  716–719
  21. High-power repetitively pulsed electric-discharge HF laser

    Kvantovaya Elektronika, 40:7 (2010),  615–618
  22. Detachment instability of self-sustained volume discharge in active media of non-chain HF(DF) lasers

    Kvantovaya Elektronika, 40:6 (2010),  484–489
  23. Electrode system for electric-discharge generation of atomic iodine in a repetitively pulsed oxygen — iodine laser with a large active volume

    Kvantovaya Elektronika, 40:5 (2010),  397–399
  24. Solid-state laser-pumped high-power electric-discharge HF laser

    Kvantovaya Elektronika, 40:5 (2010),  393–396
  25. Temporal structure of an electric signal produced upon interaction of radiation from a HF laser with the bottom surface of a water column

    Kvantovaya Elektronika, 39:2 (2009),  179–184
  26. On the possibility of controlling the wave front of a wide-aperture HF(DF) laser by the method of Talbot interferometry

    Kvantovaya Elektronika, 38:1 (2008),  69–72
  27. Study of the temperature dependence of the critical electric field strength in SF6 and mixtures of SF6 with C2H6 by the method of laser gas heating

    Kvantovaya Elektronika, 37:10 (2007),  985–988
  28. Self-sustained volume discharge in SF6-based gas mixtures upon the development of shock-wave perturbations of the medium initiated by a pulsed CO2 laser

    Kvantovaya Elektronika, 36:7 (2006),  646–652
  29. Once again on the role of UV illumination in non-chain electric-discharge HF(DF) lasers

    Kvantovaya Elektronika, 34:2 (2004),  111–114
  30. Self-initiating volume discharge in iodides used for producing atomic iodine in pulsed chemical oxygen – iodine lasers

    Kvantovaya Elektronika, 33:6 (2003),  489–492
  31. Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror

    Kvantovaya Elektronika, 32:2 (2002),  115–120
  32. Development of a self-initiated volume discharge in nonchain HF lasers

    Kvantovaya Elektronika, 32:2 (2002),  95–100
  33. Ion – ion recombination in SF6 and in SF6 – C2H6 mixtures for high values of E/N

    Kvantovaya Elektronika, 31:7 (2001),  629–633
  34. Discharge characteristics in a nonchain HF(DF) laser

    Kvantovaya Elektronika, 30:6 (2000),  483–485
  35. Self-initiated volume discharge in nonchain HF lasers based on SF6—hydrocarbon mixtures

    Kvantovaya Elektronika, 30:3 (2000),  207–214
  36. Nonchain electric-discharge HF (DF) laser with a high radiation energy

    Kvantovaya Elektronika, 25:2 (1998),  123–125
  37. Feasibility of increasing the output energy of a nonchain HF (DF) laser

    Kvantovaya Elektronika, 24:3 (1997),  213–215

  38. Errata to the article: Self-initiating volume discharge in iodides used for producing atomic iodine in pulsed chemical oxygen – iodine lasers

    Kvantovaya Elektronika, 33:8 (2003),  750


© Steklov Math. Inst. of RAS, 2025